
Characterization of Scientific Workflows

Shishir Bharathi Ann Chervenak Ewa Deelman Gaurang Mehta Mei-Hui Su

Karan Vahi

USC Information Sciences Institute

Marina del Rey, CA

{shishir, annc, deelman, gmehta, mei, vahi}@isi.edu

Abstract

Researchers working on the planning, scheduling and

execution of scientific workflows need access to a wide va-

riety of scientific workflows to evaluate the performance of

their implementations. We describe basic workflow struc-

tures that are composed into complex workflows by scien-

tific communities. We provide a characterization of work-

flows from five diverse scientific applications, describing

their composition and data and computational require-

ments. We also describe the effect of the size of the in-

put datasets on the structure and execution profiles of these

workflows. Finally, we describe a workflow generator that

produces synthetic, parameterizable workflows that closely

resemble the workflows that we characterize. We make

these workflows available to the community to be used as

benchmarks for evaluating various workflow systems and

scheduling algorithms.

1. Introduction

The availability of a library of scientific workflow bench-

marks would be extremely valuable for the development

and comparison of workflow management systems. Such

benchmarks would allow direct comparisons of different

workflow systems and would facilitate the evaluation of

scheduling and data management algorithms within work-

flow systems. To date, few scientific workflows have been

made available for general use, including providing access

to their data and codes. The Montage astronomy work-

flow [1] is one exception that has been widely used to evalu-

ate workflow algorithms and systems. However, access to a

wider variety of scientific workflow benchmarks is needed,

since the optimizations performed by workflow planners,

execution systems and schedulers may be more suited to

some workflow patterns and structures than others.

The goal of our work is to provide an initial library of

scientific workflows for use by the research community. We

hope this effort will lead to the contribution of workflows

from other scientific communities for use in the develop-

ment of new and existing workflow systems.

In this paper, we provide detailed characterizations of

five scientific workflows that include massively parallel

workflows that process large amounts of data, pipelined ap-

plications that split up input datasets and operate on differ-

ent chunks in parallel, and workflows that have a relatively

fixed structure and perform identical analyses on multiple

input datasets. The workflows are taken from diverse ap-

plication domains such as astronomy, biology, gravitational

physics and earthquake science. While we do not claim

that these workflows represent the full spectrum of scien-

tific workflows, we believe this work is a useful first step in

characterizing that spectrum.

This paper is organized as follows. We begin in Sec-

tion 2 with an overview of the scientific workflows that we

characterize. In Section 3, we discuss the workflow char-

acterization process, identify structures common to many

workflows and describe how these are composed to gener-

ate complex workflows. In Section 4, we characterize in

detail the scientific workflows described in Section 2. We

highlight the data and computational requirements of each

workflow and discuss how these may change when smaller

or larger datasets are processed by similar workflows. In

Section 5, we discuss our workflow generator, which creates

synthetic, parameterizable workflows with similar charac-

teristics to the characterized scientific workflows. We make

these synthetic workflows available to the application com-

munity for study and comparison in the DAX (Directed

Acyclic Graph in XML) format, which can be directly in-

gested by some workflow management systems such as Pe-

gasus [2] or converted into input formats for other workflow

systems. Finally, we discuss related work in Section 6 and

outline directions for future work in Section 7.



2. Overview of scientific workflows

We now briefly describe the scientific workflows that we

have characterized.

2.1. Montage

Montage [1] was created by the NASA/IPAC Infrared

Science Archive as an open source toolkit that can be used

to generate custom mosaics of the sky using input images in

the Flexible Image Transport System (FITS) format. Dur-

ing the production of the final mosaic, the geometry of the

output is calculated from the geometry of the input images.

The inputs are then re-projected to be of the same spatial

scale and rotation. The background emissions in the images

are then corrected to be of the same level in all images. The

re-projected, corrected images are co-added to form the fi-

nal mosaic.

The Montage application has been represented as a

workflow that can be executed in Grid environments such

as the TeraGrid [3].

2.2. CyberShake

The CyberShake workflow is used by the Southern Cali-

fornia Earthquake Center (SCEC [4]) to characterize earth-

quake hazards in a region using the Probabilistic Seismic

Hazard Analysis (PSHA) technique. Given a region of

interest, an MPI based finite difference simulation is per-

formed to generate Strain Green Tensors (SGTs). From the

SGT data, synthetic seismograms are calculated for each of

the ruptures that were predicted. Once this is done, spectral

acceleration and probabilistic hazard curves are generated.

CyberShake workflows resulting in a total of more than

800,000 jobs have been executed using the Pegasus Work-

flow Management System (Pegasus-WMS) on the Tera-

Grid. Additional details are available in Deelman et al [5]

and Callaghan et al [6].

2.3. Epigenomics

The USC Epigenome Center is currently involved in

the mapping of the epigenetic state of human cells on a

genome-wide scale.

The Epigenomics workflow is essentially a data process-

ing pipeline that uses the Pegasus Workflow Management

System to automate the execution of the various genome

sequencing operations. The DNA sequence data generated

by the Illumina-Solexa [7] Genetic Analyzer system is split

into several chunks that can be operated on in parallel. The

data in each chunk is converted into a file format that can

be used by the Maq [8] system. The rest of the opera-

tions involve the filtering out of noisy and contaminating

sequences, mapping sequences into the correct location in a

reference genome, generating a global map and then identi-

fying the sequence density at each position in the genome.

This workflow is being used by the Epigenome Center in

the processing of production DNA methylation and histone

modification data.

2.4. LIGO Inspiral Analysis Workflow

The Laser Interferometer Gravitational Wave Observa-

tory (LIGO) is attempting to detect gravitational waves pro-

duced by various events in the universe as per Einstein’s

theory of general relativity.

The LIGO Inspiral Analysis Workflow [9] is used to an-

alyze the data obtained from the coalescing of compact bi-

nary systems such as binary neutron stars and black holes.

The time-frequency data from any event for each of the

three LIGO detectors is split into smaller blocks for anal-

ysis. For each block, the workflow generates a subset of

waveforms belonging to the parameter space and computes

the matched filter output. If a true inspiral has been de-

tected, a trigger is generated that can then be checked with

triggers for the other detectors. Several additional consis-

tency tests may also be performed.

2.5. SIPHT

The bioinformatics project at Harvard University is con-

ducting a wide search for small untranslated RNAs (sRNAs)

that regulate several processes such as secretion or virulence

in bacteria.

The sRNA identification protocol using high-throughput

technology (SIPHT) program [10] uses a workflow to auto-

mate the search for sRNA encoding-genes for all of the bac-

terial replicons in the National Center for Biotechnology In-

formation (NCBI) database. The kingdom-wide prediction

and annotation of sRNA encoding genes involves a variety

of individual programs that are executed in the proper order

using Condor DAGMan’s [11] capabilities. These involve

the prediction of Rho-independent transcriptional termina-

tors, BLAST (Basic Local Alignment Search Tools) com-

parisons of the inter genetic regions of different replicons

and the annotations of any sRNAs that are found.

3. Characterization of workflows

Next, we describe basic concepts and terminologies that

we use to characterize scientific workflows.

In Figure 1, we show some of the basic structures or

components of scientific workflows. The final workflow

is usually composed of several such components. Similar

components have been considered for control flow struc-

tures, for example by the Workflow Patterns Initiative [12].



Figure 1. Basic workflow structures

However, in this paper our discussion is restricted to a study

of how data partitioning and aggregation impacts the overall

structure and execution of scientific workflows.

The simplest structure is the process structure that oper-

ates on some input data to produce an output. Several such

data processing jobs can be combined sequentially to pro-

duce the pipeline structure. This structure can be found in

several workflows and therefore, we describe it as a unique

structure. In this case, each job in the pipeline operates on

the output of the previous stage and the output produced is

fed as input to the next stage in the pipeline. Data distri-

bution jobs serve two purposes: they may either produce

output data that are consumed by multiple jobs or they may

operate on large datasets and divide or “chunk” them into

smaller subsets to be processed by other jobs in the work-

flow. Since the latter usage is quite common, we also refer

to it as data partitioning in the rest of this paper. If the parti-

tioning involves computation in addition to creating smaller

chunks of data, data partitioning jobs may consume a lot of

time on the compute resource. However, partitioning leads

to increased parallelism in the later stages of the workflow,

and indeed this is the main reason for partitioning the data.

Data aggregation jobs aggregate and process the outputs of

several individual jobs and generate a combined data prod-

uct. As data aggregation jobs operate on several individual

data items, they can potentially consume a lot of time on

compute resources. Additionally, such jobs may represent a

reduction in the parallelism of the workflow. In some cases,

data aggregated from a previous stage are redistributed to

multiple jobs in a following stage. Even though data re-

distribution jobs represent a potential bottleneck, the paral-

lelism is once again increased in future stages. Such data

redistribution jobs can be found in several scientific work-

flows and represent a synchronization point from the data

processing perspective.

4. Characterization of example workflows

In this section, we provide characterizations of each of

the workflows mentioned in Section 2 and describe how

jobs in each workflow relate to the simple workflow struc-

tures described in Section 3. Scientific workflows executed

on the Grid are quite large in some cases. To better depict

individual jobs and their relationships, we visualize each

workflow type using smaller synthetic workflows generated

using our workflow generator. However, note that the exe-

cution times and data sizes we refer to in this section are ob-

tained from actual executions of the workflows on the Grid.

4.1. Montage

In Figure 2, we show a relatively small (20 node)

Montage-like workflow generated by the workflow gener-

ator. The number of inputs processed by the workflow may

increase over time as more images of a particular region of

the sky are available. As such, the structure of the workflow

changes to accommodate the increase in the number of in-

puts, which also translates to an increase in the number of

computational jobs.

The number of mProjectPP jobs (which re-project the

input image) is equal to the number of input FITS images

processed. The outputs are the reprojected image and an

“area” image that consists of the fraction of the image that

belongs in the final mosaic. These are then processed to-

gether in subsequent steps. An mDiffFit job computes a

difference for each pair of overlapping images. The num-

ber of mDiffFit jobs in the workflow therefore depends on

how the input images overlap. The difference images are

then fitted using a least squares algorithm by the mConcat-

Fit job. The mConcatFit job fits the description of a data

aggregation job, introduced in Section 3, and is also a com-

putationally intensive job. Next, a correction to be applied
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Figure 2. Montage workflow

to each image to obtain a good global fit is determined by

the mBgModel job. The background correction is applied

to each individual image by the mBackground jobs. The

mConcatFit and mBgModel jobs are individually data ag-

gregation and data partitioning jobs respectively. However,

together they can also be considered as a data redistribution

point. Note that there is not a lot of data being partitioned in

this case. Rather, the same background correction is applied

to all images. The mImgTbl job aggregates metadata from

all the images and creates a table that may be used by other

jobs in the workflow. As such, it represents a simple data

aggregation step. The mAdd job co-adds all the reprojected

images to generate the final mosaic in FITS format as well

as an area image that may be used in further computation.

The mAdd job is the most computationally intensive job in

the workflow. The size of the FITS image is reduced by the

mShrink job by averaging blocks of pixels. The shrunken

image is then converted to JPEG format by the mJPEG job.

In Table 1, we provide the runtimes from an execution of

a 1.0 degreeMontage workflow on the Grid. We provide the

total sizes (i.e. the sum of the sizes of all files) of inputs and

outputs consumed and generated by each job. Note that the

same input data item may be consumed by multiple jobs.

4.2. CyberShake

In Figure 3, we show a small CyberShake-like work-

flow. The workflow, while relatively simple in structure,

can be used to perform significant amounts of computation

on extremely large datasets. Strain Green Tensor (SGT)

data generated from finite simulations are maintained in

the form of large “master” SGT files for x and y dimen-

sions. Such master SGT data is generated for a number of

sites, each of which represent the impact of an earthquake

hazard as measured at a given location. The ExtractSGT

jobs in the workflow extract the SGTs pertaining to a given

〈source, rupture〉 pair from the master SGT files for the

site. ExtractSGT jobs may therefore be considered as data

partitioning jobs. Synthetic seismograms are generated for

each variation of the 〈source, rupture〉 pair by the Seismo-

gramSynthesis jobs. Peak intensity values, in particular the

spectral acceleration, are calculated by the PeakValueCal-

cOkaya jobs for each synthetic seismogram. The resulting

synthetic seismograms are collected and compressed by the

ZipSeismograms and ZipPeakSA jobs to be staged out and

archived. These jobs may be considered as simple data ag-

gregation jobs, although they are not followed by further

processing.

Of the computational jobs, seismogram synthesis jobs
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Figure 3. CyberShake workflow

are the most computationally intensive. However, when the

workflow is executed on the Grid, due to the large sizes of

the master SGT files, ExtractSGT jobs may also consume

a lot of time on compute resources. Additionally, since a

lot of data may be generated by the workflow, the ZipSeis-

mograms and ZipPeakSA jobs may also consume a large

amount of time in generating the compressed files to be

staged out.

In Table 2, we provide execution times of jobs and data

sizes from the execution of a subset of a relatively large

(more than 800,000 jobs) CyberShake workflow on the

Grid.

4.3. Epigenomics

In Figure 4, we show an example of a synthetic epige-

nomics workflow generated by our workflow generator. The

epigenomics workflow represents a largely pipelined appli-

cation with multiple pipelines operating on distinct chunks

of data. This workflow is specific to data produced by

the Illumina-Solexa genetic analyzer and the Maq mapping

software. The overall input to the workflow is sequence

data obtained for multiple “lanes” from the genetic analysis

process. The information from each lane is split into mul-

tiple chunks by the fastqSplit jobs. The number of splits

generated depends on the chunking factor used on the input

data. The fastqSplit jobs represent data partitioning jobs in

the workflow. The filterContams jobs then filter out noisy

and contaminated data from each of the chunks. The data in

each chunk is then converted to a format understood by later

maq programs by the maq sol2sanger utility. For faster pro-

cessing and reduced diskspace usage, the data is then con-

verted to the binary fastQ format by maq’s fastq2bfq utility.

Next the remaining sequences are aligned with the reference

genome by the map utility. The results of individual map

processes are combined using one or more stages of map-

Merge jobs, which are data aggregation jobs. The maqindex

utility operates on the merged alignment file and retrieves

reads about a specific region and the pileup utility displays

the alignment in a specific “pileup” format.

As might be expected, the map jobs that align sequences

with the reference genome are the most computationally in-

tensive followed by the pileup jobs that work on the en-

tire aligned output. The performance of other jobs in the

pipeline mainly depends on the amount of data in each of

the individual chunks.

To understand the above notions better, we refer the

reader to Table 3 that lists job runtimes and sizes of files

consumed and generated during an actual execution of the

workflow. f a s t Q S p l i tf i l t e r C o n t a m ss o l 2 s a n g e rf a s t q 2 b f qm a pm a p M e r g em a q I n d e xp i l e u p
Figure 4. Epigenomics workflow

4.4. LIGO Inspiral Analysis Workflow

In Figure 5, we show an example of a synthetic workflow

similar in structure to the LIGO Inspiral AnalysisWorkflow.

In reality, an instance of the workflow is likely to have sev-

eral hundreds of jobs. The TmpltBank jobs, which identify

the continuous family of waveforms that belong to the pa-

rameter space for each block of the data, can all be executed

in parallel once the input data from the LIGO detectors have

been split into multiple blocks (each of 2048 seconds [9]).

The output of a TmplBank job is a bank of waveform pa-

rameters that are used by the matched filtering code in an

Inspiral job. The triggers produced by multiple Inspiral jobs

are tested for consistency by inspiral coincidence analysis

jobs, which are denoted by Thinca in the example. Since

these jobs operate on data obtained from multiple jobs, they

can be regarded as data aggregation jobs. The outputs of

the Thinca jobs are inputs to the TrigBank jobs that gener-

ate template banks out of the triggers. These template banks

are then used by the second set of Inspiral jobs, followed by



Table 1. Example of a Montage Execution Profile

Executed on viz-cluster at ISI - 8 nodes with dual Intel Xeon 2.4 GHz processors, 2 GB Memory

Job Count Runtime Inputs Outputs

Mean(s) Variance Mean(MB) Variance Mean(MB) Variance

mProject 45 13.59 6.00e-02 4.03 0 7.94 4.14e-04

mDiffFit 107 10.59 1.00e-02 15.88 1.37e-03 0.54 7.92e-02

mConcatFit 1 13.60 0 0.03 0 0.02 0

mBgModel 1 10.88 0 0.03 0 0.00 0

mBackground 45 10.74 3.00e-02 7.95 4.14e-04 7.94 4.14e-04

mImgtbl 1 10.69 0 357.27 0 0.01 0

mAdd 1 30.34 0 357.28 0 330.86 0

mShrink 1 12.26 0 165.43 0 6.62 0

mJPEG 1 10.96 0 6.62 0 0.32 0

Table 2. Example of a CyberShake Execution Profile

Executed on OSG cluster at PSU [13]

Job Count Runtime Inputs Outputs

Mean(s) Variance Mean(MB) Variance Mean(MB) Variance

extract sgt 19 355.31 1.80e+05 38,786.64 5.78e+00 441.97 9.85e+04

seismogram synthesis 5,726 63.35 4.38e+02 791.46 5.20e+04 0.02 0

ZipSeismograms 1 942.37 0 0.00 0 2.05 0

PeakValCalc Okaya 5,726 1.36 3.91e+00 0.02 0 0.00 0

ZipPeakSA 1 398.79 0 0.00 0 118.79 0

Table 3. Example of an Epigenomics Execution Profile

Executed on USC HPCC Cluster using 8 nodes with dual Intel quad core 2GHz cpus, 16 GB memory

Job Count Runtime Inputs Outputs

Mean(s) Variance Mean(MB) Variance Mean(MB) Variance

fastqSplit 2 41.78 1.82e+02 462.20 6.92e+03 462.20 6.92e+03

filterContams 146 1.15 5.00e-01 6.33 2.37e-02 0.00 0

sol2sanger 146 0.24 1.00e-02 3.16 1.14e-02 2.41 6.55e-03

fast2bfq 146 0.39 2.00e-02 2.41 6.55e-03 0.53 2.01e-03

map 146 9,635.01 1.66e+07 2,964.24 2.01e-03 0.58 3.18e-03

mapMerge 3 23.54 3.26e+01 52.67 2.99e+02 48.79 3.38e+02

chr21 (maqIndex) 1 3.57 0 72.36 0 0.91 0

pileup 1 3,269.73 0 2,964.62 0 3.13 0
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another set of Thinca jobs. Therefore, the first set of Thinca

jobs can also be regarded as data redistribution jobs.

Inspiral jobs executing thematched filter to generate trig-

ger are the most computationally intensive jobs in the work-

flow and there is considerable variance in the execution

times of these jobs. Even though the Thinca jobs perform

consistency checks on data aggregated from multiple Inspi-

ral jobs, they are not as computationally intensive as the In-

spiral jobs. For comparison purposes, we list runtimes for

jobs from an actual execution in Table 4 and also provide

the total sizes of inputs consumed and outputs generated by

each type of job.

4.5. SIPHT

A SIPHT-like workflow is shown in Figure 6. All

SIPHT workflows have almost identical structures, and

larger workflows can be generated by composing indepen-

dent smaller workflows. The only difference in the struc-

tures of any two instances is in the number of Patser jobs

that depends on inputs describing transcription factor bind-

ing sites (TFBSs). The results of these Patser jobs are con-

catenated by the Patser concate job, which is a data aggre-

gation job. There are various BLAST jobs in the workflow

that compare different combinations of sequences. The ini-

tial BLAST job (that does not depend on any other job) and

the Blast QRNA job operate on all possible partner inter-

genetic regions (IGRs) from other suitable replicons. Even

though it is not apparent in Figure 6, these BLAST jobs

operate on hundreds of data files and can therefore be re-

garded as data aggregation jobs. There are three jobs in the

workflow that search for transcription terminators - Find-

Term, RNAMotif and Transterm. The sRNA prediction is

performed by the SRNA job that operates on the outputs of

the above jobs as well as the output of the initial BLAST

job. The output of this job is used by the other BLAST

jobs. Therefore, the SRNA job may be regarded as a data

redistribution job. The SRNA Annotate job annotates candi-

date sRNA loci that were found, for multiple features such

as its conservation in other bacterial strains, its association

with putative TFBSs, and its homology to other previously

identified sRNAs [10]. Therefore, this can be regarded as a

data aggregation job.

Of all the jobs in the workflow, the BLAST jobs that

compare sequences between several replicon pairs are the

most computationally intensive. The next computationally

intensive is the sRNA prediction job followed by the jobs

that identify transcription terminators. In Table 5, we list

the execution execution profile statistics collected from an

earlier execution of the SIPHT workflow.

P a t s e r _ C o n c a t eB l a s t _ C a n d i d a t e B l a s tR N A _ M o t i f
S R N A _ a n n o t a t eB l a s t _ s y n t e n y L a s t _ t r a n s f e rP a t s e r F F N _ P a r s eB l a s t _ Q R N AS R N A T r a n s t e r m F i n d t e r m

B l a s t _ p a r a l o g u e s
Figure 6. SIPHT workflow

5. Generation of workflows for simulation

To facilitate evaluation of workflow algorithms and sys-

tems on a range of workflow types and sizes, we have devel-

oped a workflow generator. This generator uses the infor-

mation gathered from actual executions of scientific work-

flows on the Grid as well as our understanding of the pro-

cesses behind these workflows to generate synthetic work-



Table 4. Example of a LIGO Inspiral Analysis Execution Profile

Executed on NCSA Teragrid [14]

Job Count Runtime Inputs Outputs

Mean(s) Variance Mean(MB) Variance Mean(MB) Variance

tmpltbank 34 18.14 1.80e-01 70.81 1.62e-03 0.94 3.27e-04

inspiral 76 460.21 2.97e+05 74.68 2.17e-01 0.30 3.05e-01

thinca 14 5.37 6.00e-02 16.08 6.51e+00 0.03 1.72e-03

trigbank 42 5.11 0 13.62 2.19e-03 0.01 1.25e-04

Table 5. Example of a SIPHT Execution Profile

Executed on a heterogeneous Condor pool at U. Wisconsin, nodes with 4 2.7GHz processors and 2-4 GB memory

Job Count Runtime Inputs Outputs

Mean(s) Variance Mean(MB) Variance Mean(MB) Variance

Transterm:2.0.5 1 32.02 0 4.65 0 0.41 0

Findterm 1 975.16 0 4.87 0 45.84 0

RNAMotif:3.0.4 1 43.93 0 4.64 0 1.00 0

Blast 1 3,331.16 0 258.41 0 4.31 0

Patser:3.0.1 17 1.32 1.90e-01 4.30 1.18e-08 0.01 1.96e-05

SRNA 1 306.53 0 22.09 0 5.12 0

Patser concate 1 0.01 0 0.11 0 0.11 0

FFN parse 1 1.40 0 4.40 0 0.83 0

Blast synteny 1 33.05 0 3.30 0 1.35 0

Blast candidate 1 5.76 0 1.37 0 0.01 0

Blast QRNA 1 1,344.88 0 258.93 0 4.50 0

Blast paralogues 1 4.54 0 1.20 0 1.24 0

SRNA annotate 1 1.90 0 3.43 0 1.10 0



flows resembling those characterized in this paper. Our

workflow generator supports various parameters for each of

the workflow types that we have discussed, allowing for the

generation of workflows of different scale for each type.

The generation of synthetic workflows involves two

main steps: identification of individual jobs and their com-

positions followed by annotation of the workflow with exe-

cution times for computational jobs and sizes for data items.

We now describe these steps in further detail.

The structure of the generated workflow is determined

by the number of inputs to be processed, the number of jobs

in the workflow and their composition. The type and com-

positions of the jobs that are created depend on the work-

flow type specified by the user. The number of inputs and

the number of jobs in the workflow is determined by user

specified parameters - either directly or as a function of

the scale of the workflow to be generated. For example,

in the case of Montage workflows, if the scale of the work-

flow is specified in terms of the degree of the final image,

the generator will first estimate the number of inputs for a

workflow of the given degree based on patterns observed

in existing workflows of various degrees. The implementa-

tion of the workflow generator encodes our understanding

of the various components and compositions of each work-

flow type, allowing us to describe the processing and com-

bination of data items in a manner similar to that observed

in real workflows. For example, with Montage workflows,

the workflow generator creates an mProjectPP job for each

input image, and for each pair of input images, an mDiffFit

job is created to represent the calculation of the differences

of the reprojected images. As in real Montage workflows,

an mConcatFit job that represent the least squares fit of the

reprojected images and a mBgModel job that represents the

calculation of the background correction are also created.

To be consistent with actual Montage workflows, for each

mProjectPP job that generates the reprojected image, we

include a corresponding mBackground job that represents

the application of the background correction to each repro-

jected image. The final stages of the workflow, denoted by

the pipeline structure in Figure 2, represent the creation of

the final mosaic. These stages are common to all Montage

workflows, and therefore, are also included by the workflow

generator.

Once a workflow of the proper structure has been gener-

ated, the next step is to estimate the sizes of the data items

processed and generated by the workflow. In some cases,

(e.g. input images in Montage workflows), all inputs may

have the same size. This is duplicated in the workflow gen-

erator. The sizes of intermediate and output data products

are estimated from the number and types of inputs being

processed as well as the scale of the workflow. For example,

the size of final mosaic for a 4.0 degree Montage workflow

will be calculated to be approximately 16 times as large as

the size calculated for a 1.0 degree workflow. Once this

is done, the execution times associated with jobs are cal-

culated using estimates from actual executions and scaling

them appropriately, depending on the sizes of the input data

items being processed. In this way, we ensure that execu-

tion times and data sizes associated with individual jobs are

consistent with the execution times and data sizes associ-

ated with other jobs in the workflow as well as the input

parameters specified during the generation of the workflow.

For the runtimes of most jobs and the sizes of most data

items (except when they are known deterministically), we

generate variations in the estimated values using truncated

normal distributions. Note that for some workflows, a larger

workflow (in terms of jobs) may or may not result in larger

execution times and data sizes. For example, each Tmplt-

Bank job in the LIGO Inspiral Analysis workflow always

operates on a chunk of data representing 2048 seconds of

information. The data sizes and execution times for all such

jobs will be picked from the same distribution and will not

vary with the number of other jobs in the workflow.

The generated workflows are represented in the Directed

Acyclic Graph in XML (DAX) format, which is commonly

used for workflows planned with Pegasus. The DAX for-

mat represents the abstract form of the scientific workflow

by listing the jobs that are to be executed, the inputs and

outputs for each of these jobs and the control and data flow

dependencies between the jobs in the workflow. We include

additional annotations that specify the sizes of data items

and execution times for jobs in the workflow.

In addition to the workflow generator, we plan to pro-

vide a client program that can simulate the execution of

each job in the workflow. Data items used in the work-

flow are typically files and can be created using utilities like

“dd” on UNIX like systems. Together the workflow and

the various clients can be used to model the executions of

real world workflows on the Grid and may be used by dif-

ferent projects to benchmark their workflow systems. Note

that the actual data and executables needed to execute these

workflows belong to the respective scientific communities

and are not provided with the synthetic workflows.

6. Related work

We now briefly discuss related work in the following

contexts: characterization of workflow patterns, analysis of

workloads, workflow generation and the creation of reposi-

tories for the sharing and reuse of scientific workflows.

In the area of identifying basic workflow components,

Van der Aalst and Ter Hofstede have started The Workflow

Patterns initiative to “provide a conceptual basis for process

terminology” [12]. They categorize various perspectives

such as control flow, data, resource and exception handling

that need to be supported by workflow description and busi-



ness process modeling languages. On their website, they

also maintain descriptions of common patterns for each per-

spective, such as sequence, parallel split, synchronization,

etc. for the control flow perspective. In contrast, we focus

more on how data is partitioned and aggregated leading to

complex workflow structures.

The characterizations of workloads of different scien-

tific applications were performed by Berry et al [15].

Their benchmarks derived from fluid dynamics, molecu-

lar dynamics and structural dynamics applications were

mainly used to measure hardware performancemetrics (e.g.

FLOPS) on supercomputers. In this paper we character-

ize workflows used by scientific applications and describe

how synthetic workflows may be used to measure the per-

formance of workflow algorithms and systems.

Next, we describe related work in the area of charac-

terizing workloads in distributed and Grid environments.

The Parallel Workload Archive [16] and, more recently, the

Grid Workload Archive [17] provide workloads from var-

ious parallel and Grid execution environments and can be

used in simulations of such environments. These workloads

are typically centered around the performance and utiliza-

tion of computational resources, whereas our goal is to also

provide an insight into the overall data processing needs of

the application.

Iosup et al. [18] describe the system-wide, virtual

organization-wide, and per user characteristics of traces ob-

tained from four real Grids. Once again, such analyses pro-

vide significant insight into howGrid environments are used

and allows users to develop better models of such environ-

ments. Our goals are complementary to such efforts in pro-

viding more insight into individual applications.

Finally, we describe efforts related to the creation of

repositories aimed at the sharing of workflow components

for use by various communities. De Roure et al [19] de-

scribe the myExperiment virtual research environment [20]

that enables scientists to share and execute workflows as

well as discuss different workflowmanagement systems and

best practices. myExperiment utilizes several Web 2.0 prin-

ciples to build a community where users can contribute their

workflows for reuse by other scientists. It also allows users

to launch their workflows from the website using the Tav-

erna [21] workbench. We expect our repository to be used

mainly by researchers working on the development of ex-

isting and new workflow systems.

Von Laszewski and Kodeboyina [22] describe the frame-

work of a Repository Service for Grid Workflow Compo-

nents that supports storing and sharing of workflow com-

ponents defined by the community. In addition, they de-

scribe the integration of the repository service into the Kara-

jan [23] scripting language, which allows for items in the

repository to be accessed and reused. Again, our focus is

in providing synthetic workflows that can be used to evalu-

ate various workflow systems as opposed to generating real

workflows that can be used by scientific communities.

7. Conclusions and future work

In this paper, we identified basic data processing struc-

tures that can be used to compose complex scientific work-

flows. We characterized the workflows used by five diverse

scientific communities, identified their data and computa-

tional needs and described how the workflows change with

the amount of data being processed. We described a work-

flow generator that creates synthetic workflows similar to

the ones we characterized and explained how these are an-

notated with runtimes of computational jobs and sizes of

data items. Finally, we make these available to the work-

flow community for experimentation.

For the future, our main goal is to expand the reposi-

tory of benchmarks with workflows from other scientific

applications and make these available to the community.

We hope that in time, the repository will expand to bet-

ter represent the full spectrum of scientific workflows. The

synthetic workflows described in this paper are available at

http://vtcpc.isi.edu/pegasus/index.php/WorkflowGenerator.
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