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Abstract. This paper aims to address the problem of scheduling large
workflows onto multiple execution sites with storage constraints. Three
heuristics are proposed to first partition the workflow into sub-workflows.
Three estimators and two schedulers are then used to schedule sub-
workflows to the execution sites. Performance with three real-world work-
flows shows that this approach is able to satisfy storage constraints and
improve the overall runtime by up to 48% over a default whole-workflow
scheduling.
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1 Introduction

Scientific workflows [1] have been widely applied in astronomy [2], seismology
[3], genomics [4], etc. A scientific workflow has a sequence of jobs that perform
required functionality and it has control or data dependencies between jobs.
Workflows in systems such as Pegasus [5] are defined at an abstract level, devoid
of resource assignments. A key problem that needs to be addressed is the map-
ping of jobs in the workflow onto resources that are distributed in the wide area.
This is especially challenging for data-intensive workflows that require significant
amount of storage. For these workflows, we need to use multiple execution sites
and consider their available storage. For example, the CyberShake [3] workflow
has 80 sub-workflows and each sub-workflow has more than 24,000 individual
jobs and 58 GB data. A sub-workflow is a workflow and also a job of a higher-
level workflow. We use Condor [6] pools as execution sites.

In this paper, we have developed a three-phase scheduling approach inte-
grated with the Pegasus Workflow Management System [5] to partition, esti-
mate, and schedule workflows onto distributed resources. Pegasus is a workflow-
mapping and execution engine that is used to map large-scale scientific workflows
onto the available resources. Our contributions include three heuristics to par-
tition workflows respecting storage constraints and internal job parallelism. We
utilize three methods to estimate runtime of sub-workflows and then we schedule
them based on two commonly used algorithms (MinMin[7] and HEFT([8]).

The reason that we partition workflows into sub-workflows instead of schedul-
ing individual jobs is that this approach reduces the complexity of the workflow



mapping. For example, the entire CyberShake workflow has more than 1.9x10°
tasks, which is a large number for workflow management tools. In contrast, each
sub-workflow has 24,000 tasks, which is acceptable for these tools.

We model workflows as Directed Acyclic Graphs (DAGs), where nodes repre-
sent computation and directed edges represent data flow dependencies between
nodes. Such workflows comprise sequences of fan-out (where the output of a job
is input to many children), fan-in (where the output of several jobs is aggregated
by a child), and pipeline nodes (1 parent, 1 child). We assume that the size of
each input file and output file is known, and that they are much smaller than the
storage constraints of a site. To estimate the runtime of sub-workflows, runtime
information for each job is required. In our proposed heuristics, we use historical
performance information.

2 Related Work

Considerable amount of work tried to solve workflow-mapping problem using
DAG scheduling heuristics such as HEFT[8], Min-Min[7], etc. Sonmez [10] ex-
tended them to multiple workflows in multi-cluster grids. Duan [9], Wieczorek
[16] have discussed the scheduling and partitioning of scientific workflows in dy-
namic grids. These algorithms do not take storage constraints into consideration
and they need to check every job and schedule it, while our algorithm only needs
to check a few particular types of jobs (see Section 3).

Singh[11] optimized disk usage and runtime performance by removing data
files when they’re no longer required. We distinguish our work in three points.
First, there is an upper bound of the amount of data that can be cleaned up.
If the workflow with data clean up is still too large for a single site to run,
our work tries to find a valid partitioning if it exists. Second, our algorithm only
needs to check a few particular jobs instead of the entire workflow. Third, simply
applying scheduling algorithms to this problem and grouping jobs at the same
sites into sub-workflows may result in invalid workflows with cross dependencies
(see Section 3). Data clean up can be simply added to our approach.

Workflow partitioning can be classified as a network cut problem [12] where
a sub-workflow is viewed as a sub-graph. But there are two differences with our
approach. First, we must consider the problem of data overlap when a new job is
added to a sub-workflow. Second, valid workflows require no cross dependencies
although it is possible to make that cut in network cut problem.

3 System Design

Our approach (shown in Fig.1) has three phases: partition, estimate and sched-
ule. The partitioner takes the original workflow and site catalog (containing
information about available execution sites) [5] as input, and outputs various
sub-workflows that respect the storage constraints—this means that the data
requirements of a sub-workflow are within the data storage limit of a site. The
site catalog provides information about the available resources. The estimator



provides the runtime estimation of the sub-workflows and supports three estima-
tion methods. The scheduler maps these sub-workflows to resources considering
storage requirement and runtime estimation. The scheduler supports two com-
monly used algorithms. We first try to find a valid mapping of sub-workflows
satisfying storage constraints. Then we optimize performance based on these gen-
erated sub-workflows and schedule them to appropriate execution sites if runtime
information for individual jobs is already known. If not, a static scheduler maps
them to resources merely based on storage requirements.
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Fig. 1. The steps to partition and schedule a workflow
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Cross Dependency The major challenge in partitioning workflows is to
avoid cross dependency, which is a chain of dependencies that forms a cycle in
the graph (in this case cycles between sub-workflows). With cross dependencies,
workflows are not able to proceed since they form a deadlock loop. For a workflow
depicted in Fig.2, we show the result of four different partitioning. Partitioning
(a) does not work in practice since it has a deadlock loop. Partitioning (c) is valid
but not efficient compared to Partitioning (b) or (d) that have more parallelism.

Partitioner Usually jobs that have parent-child relationships share a lot
of data since they have data dependencies. It is reasonable to schedule such



jobs into the same partition to avoid extra data transfer and also to reduce the
overall runtime. Thus, we propose Heuristic I to find a group of parents and
children. Our heuristic only checks three particular types of nodes: the fan-out
job, the fan-in job, and the parents of the fan-in job and search for the potential
candidate jobs that have parent-child relationships between them. The check
operation means checking whether one particular job and its potential candidate
jobs can be added to a sub-workflow while respecting storage constraints. Thus,
our algorithm reduces the time complexity of check operations by n folds, while
n is the average depth of the fan-in-fan-out structure. The check operation takes
more time than the search operation since the calculation of data usage needs
to check all the data allocated to a site and see if there is data overlap. Similar
to [8], the algorithm starts from the sink job and proceeds upward.

Input: Workflow G If(D > storage constraint of SL[index])

Input: Site List SL[index], which stores all Do Conservative-Search from j, update C, P, D
information about a compute site. EndIf

OQutput: Sub-workflow List SWL[index], which has Endlf -

all the sub-workflows scheduled to a compute site. /f for ather types of job

Let index = 0;

If(S causes cross dependency at SL[index])
S = new subworkflow()
EndIf

Q =new Queue()

Add the sink job of G to Q

5 e F:ubworkﬂow{) Add all the jobs inC to S

WhIIe’,Q 1s not em-pty‘ Add all the jobs in P to the head of Q
Let j be the last job in Q add S to SWL[index] .
[lfor fan-in job

) . i If(SL[index] has no enough space left)
Do Aggressive-Search from |

index ++
Let C be the list of potential candidate jobs to be EndIf
added to S on SL[index] //for other situations
Let P be the list of parents of all candidates
Let D be the data size on SL[index] with C Remove j from Q
If(D > storage constraint of SL[index]) EndWhile

Do Less-Aggressive-Search from j, update C, P, D Return SWL

Fig. 4. Pseudo-code of partitioning. Not all the situations are listed here

To search for the potential candidate jobs that have parent-child relation-
ships, the partitioner tries three steps of searches. For a fan-in job, it first checks
if it is possible to add the whole fan structure into the sub-workflow (aggressive
search). If not, similar to Fig.2(d), a cut is issued between this fan-in job and
its parents to avoid cross dependencies and increase parallelism. Then a less
aggressive search is performed on its parent jobs, which includes all of its prede-
cessors until the search reaches a fan-out job. If the partition is still too large, a
conservative search is performed, which includes all of its predecessors until the
search reaches a fan-in job or a fan-out job. Fig.3 depicts an example of three
steps of search while the workflow in it has an average depth of 4. Pseudo-code
of Heuristic I is depicted in Fig.4.

The partitioner starts by picking an execution site from site catalog and
forming a sub-workflow with the heuristic above. Users can specify the order
of execution sites to be picked or the partitioner will sort them in the order of
storage constraints. If the execution site does not have sufficient storage to host



any more jobs, a new execution site is selected. For the dependencies between
jobs across multiple sub-workflows, they form the new dependencies between sub-
workflows and are added to the final graph. The partitioner guarantees to satisfy
storage constraints since in each step it assures the size of all sub-workflows
assigned to a site is smaller than its storage constraint.

To compare the approach we propose two other heuristics. The motivation
for Heuristic IT is that Partitioning (c) in Fig.2 is able to solve the problem. The
motivation for Heuristic III is an observation that partitioning a fan structure
into multiple horizontal levels is able to solve the problem. Heuristic II adds a
job to a sub-workflow if all of its unscheduled children can be added to that sub-
workflow without causing cross dependencies or exceed the storage constraint.
Heuristic III adds a job to a sub-workflow if two conditions are met: 1) for
a job with multiple children, each child has already been scheduled; 2) after
adding this job to the sub-workflow, the data size does not exceed the storage
constraint.

Estimator To optimize the workflow performance, runtime estimation for
sub-workflows is required assuming runtime information for each job is already
known. We provide three methods. Critical Path is defined as the longest
depth of the sub-workflow weighted by the runtime of each job. Average CPU
Time is the quotient of cumulative CPU time of all jobs divided by the number
of available resources. The HEFT estimator uses the calculated earliest finish
time of the last sink job as makespan of sub-workflows assuming that we use
HEFT to schedule sub-workflows.

Scheduler The scheduler selects appropriate resources for the sub-workflows
satisfying the storage constraints and optimizes the runtime performance. We
select HEFT|[8] and MinMin|7]. There are two differences compared to their
original versions. First, the data transfer cost within a sub-workflow is ignored
since we use a shared file system in our experiments. Second, the data constraints
must be satisfied for each sub-workflow. The scheduler selects a near-optimal
set of resources in terms of available Condor slots since its the major factor
influencing the performance. Although some more comprehensive algorithms can
be adopted, HEFT or MinMin are able to improve the performance significantly
in terms that the sub-workflows are already generated since the number of sub-
workflows has been greatly reduced compared to the number of individual jobs.

4 Experiments and Evaluations

In order to quickly deploy and reconfigure computational resources, we use a
cloud computing resource in FutureGrid [17] running Eucalyptus [13]. Euca-
lyptus is an infrastructure software that provides on-demand access to Virtual
Machine (VM) resources. In all the experiments, each VM has 4 CPU cores, 2
Condor slots, 4GB RAM and has a shared file system mounted to make sure
data staged into a site is accessible to all compute nodes. In the initial experi-
ments we build up four clusters, each with 4 VMs, 8 Condor slots. In the last
experiment of site selection, the four virtual clusters are reconfigured and each
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Fig. 5. Performance of the three heuristics. The default workflow has one execution
site with 4 VMs and 8 Condor slots and has no storage constraint

cluster has 4, 8, 10 and 10 Condor slots respectively. The submit host that per-
forms workflow planning and which sends jobs to the execution sites is a Linux
2.6 machine equipped with 8GB RAM and an Intel 2.66GHz Quad CPUs. We
use Pegasus to plan the workflows and then submit them to Condor DAGMan
[14], which provides the workflow execution engine. Each execution site contains
a Condor pool and a head node visible to the network.

Fig. 6. From left to right: Heuristic I, Heuristic II, Heuristic III

Performance Metrics To evaluate the performance, we use two types of
metrics. Satisfying the Storage Constraints is the main goal of our work in
order to fit the sub-workflows into the available storage resources. We compare
the results of different storage constraints and heuristics. Improving the Run-
time Performance is the second metric that is concerned with to minimize the
overall makespan. We compare the results of different partitioners, estimators
and schedulers.

Workflows Used We ran three different workflow applications: an astron-
omy application (Montage), a seismology application (CyberShake) and a bioin-
formatics application (Epigenomics). They were chosen because they represent
a wide range of application domains and a variety of resource requirements [15].
For example, Montage is I/O intensive, CyberShake is memory intensive, and
Epigenomics is CPU intensive. The goal of the CyberShake Project [3] is to cal-
culate Probabilistic Seismic Hazard curves for locations in Southern California
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Fig. 7. CyberShake with storage constraints of 35GB, 30GB, 25GB, and 20GB. They
have 3, 4, 4, and 5 sub-workflows and require 2, 3, 3, and 4 sites to run respectively

area. We ran one partition that has 24,132 tasks and 58 GB of overall data. Mon-
tage [2] is an astronomy application that is used to construct large image mosaics
of the sky. We ran a Montage workflow with a size of 8 degree square of sky. The
workflow has 10,422 tasks and 57GB of overall data. Epigenomics [4] maps short
DNA segments collected with gene sequencing machines to a reference genome.
The workflow has 1,586 tasks and 23GB of overall data. We ran each workflow
instance 5 times to assure the variance is within 10%.

Performance of Different Heuristics We compare the three proposed
heuristics with the CyberShake application. The storage constraint for each site
is 30GB. Heuristic II produces 5 sub-workflows with 10 dependencies between
them. Heuristic I produces 4 sub-workflows and 3 dependencies. Heuristic III
produces 4 sub-workflows and 5 dependencies. The results are shown in Fig.5
and Heuristic I performs better in terms of both runtime reduction and disk
usage. This is due to the way it handles the cross dependency. Heuristic IT or
Heuristic IIT simply adds a job if it does not violate the storage constraints
or the cross dependency constraints. Furthermore, Heuristic I puts the entire
fan structure into the same sub-workflow if possible and therefore reduces the
dependencies between sub-workflows. The entire fan structure is defined as a set
of jobs and begins from a fan-out job and merges into a fan-in job. In Fig.6 with
a simplified CyberShake workflow, Heuristic I runs two sub-workflows in parallel
while the other two have to run them in sequence. From now on, we only use
Heuristic I in the partitioner in our experiments.

Performance with Different Storage Constraints Fig.7 depicts the disk
usage of the CyberShake workflows over time with storage constraints of 35GB,



30GB, 25GB, and 20GB. They are chosen because they represent a variety of
required execution sites. Fig.8 depicts the performance of both disk usage and
runtime. Storage constraints for all of the sub-workflows are satisfied. Among
them subl, sub2, sub3 (if exists), and sub4 (if exists) are run in parallel and then
sub0 aggregates their work. The CyberShake workflow across two sites with a
storage constraint of 35GB performs best. The makespan (overall completion
time) improves by 18.38% and the cumulative disk usage increases by 9.5%
compared to the default workflow without partitioning or storage constraints.
The cumulative data usage is increased because some shared data is transferred
to multiple sites. Adding more sites does not improve the makespan because
they require more data transfer even though the computation part is improved.
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Fig. 8. Performance of CyberShake, Montage and Epigenomics with different storage
constraints.

Fig.8 depicts the performance of Montage with storage constraints ranging
from 20GB to 35GB and Epigenomics with storage constraints ranging from
8.5GB to 15GB. The Montage workflow across 3 sites with 30GB disk space
performs best with 8.1% improvement in makespan and the cumulative disk
usage increases by 23.5%. The Epigenomics workflow across 3 sites with 10GB
storage constraints performs best with 48.1% reduction in makespan and only
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Fig. 9. The Montage (left) and the Epigenomics (right) workflows. For simplicity, only
a few branches are shown

1.4% increase in cumulative storage. The reason why Montage performs worse is
related to its complex internal structures. Montage has two levels of fan-out-fan-
in structures and each level has complex dependencies between them as shown
in Fig.9. Our heuristic is not able to untie them thoroughly and thereby the cost
of data transfer increases and the sub-workflows are not able to run in parallel.
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Fig. 10. Performance of estimators and schedulers

Site selection We use three estimators and two schedulers described in Sec-
tion 3 together with the CyberShake workflow. We build four execution sites
with 4, 8, 10 and 10 Condor slots respectively. The labels in Fig.10 are defined
in a way of Estimator+Scheduler. For example, HEFT+HEFT denotes a com-
bination of HEFT estimator and HEFT scheduler, which performs best. The
Average CPU Time (or CPU in Fig. 10) does not take the dependencies into
consideration and the Critical Path (or PATH in Fig.10) does not consider the
resource availability. The HEFT scheduler is slightly better than MinMin sched-
uler (or MIN in Fig.10). Although HEFT scheduler uses a global optimization
algorithm compared to MinMins local optimization, the complexity of scheduling
sub-workflows has been greatly reduced compared to scheduling a vast number
of individual tasks. Therefore, both of them are able to handle such situations.
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5 Conclusions

This paper provides a solution to address the problem of scheduling large work-
flows across multiple sites with storage constraints. Three heuristics are pro-
posed and compared to show the close relationship between cross dependency
and runtime improvement. The performance with three workflows shows that
this approach is able to satisfy the storage constraints and reduce the makespan
significantly especially for Epigenomics, which has fewer fan-in (synchronization)
jobs.
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