Pegasus: Planning for Execution in Grids 11/15/2002

(— Pegasus: Planning for Execution in Grids
Ewa Deelman, James Blythe, Y olanda Gil, Carl Kesselman

University of Southern Cdifornia, Information Sciences Institute
pagasvs

1 Motivation

Grid computing has made great progress in the last few years. The basc mechanisms for
accessing remote resources have been developed as part of the Globus Toolkit and are now
widely deployed and used. Among such mechanisms are:

= Information services, which alow for the discovery and monitoring of resources. The
information provided can be used to find the available resources and sel ect the resources
which are the most appropriate for the task.

= Security services, which allow users and resources to mutually authenticate and allows
the resources to authorize users based on local policies.

»  Resource management, which allows for the scheduling of jobs on particular resources.

» Data management services, which enable users and applications to manage large,
distributed and replicated data sets. Some of the available services deal with locating
particular data sets, others with efficiently moving large amounts of data across wide area
networks.

With the use of the above mechanisms, one can manualy find out about the resources and
schedul e the desired computations and data movements. However, this process is time consuming
and can potentially be quiet complex. As the result it is becoming increasingly necessary to
develop higher level services which can automate the process and provide an adequate level of
performance and reliability.

2 Issues in Mapping Workflows onto the Grid

In genera we can think of applications as being composed of application components. The
process of application development (shown in Figure 1) can be described as follows. The
application components are selected, their input and output file names are identified by their
logica names (names that uniquely identify the content of the file, but not its location), and the
order of the execution of the components is specified. As aresult, we obtain an abstract workflow
(AW), where the behavior of the application is specified at an abstract level.

Next this workflow needs to be mapped onto the available Grid resources, performing resource
discovery and selection. Finaly the resulting concrete workflow (CW) is sent to the executor for
execution. In this section, we focus on the behavior of the concrete workflow generator (CWG)
and its interaction with an executor, such as for example Condor-G/DAGMan [1].

Important issues are the relationship and interfaces between the planner and the executor, both
from the standpoint of planning and fault tolerance. For this discussion, we assume that multiple
requests to the system are handled independently.

One can imagine two extremes. on one hand, the planner can make an exact plan of computation
based on the current information about the system. The planner would decide where the tasks
need to execute, the exact location from where the data needs to be accessed for the computation
etc... At the other extreme, the planner can leave many decisions up to the executor, it can for

For more information, please visit www.isi.edu/~deel man/pegasus.htm or email deelman@isi.edu




Pegasus: Planning for Execution in Grids 11/15/2002

example give the executor a choice of compute platforms to use, a choice of replicas to access
etc. At the time the executor is ready to perform the computation or data movements, the executor
can consult the information services and make local planning decisions (in-time scheduling).

O O
)7 O SEVWLLFW

ORYH[I].HIDRP KRW

<Applicatiun Development and Execution Process

CEQIKRP HOGC

Iy
=i = O

Figure1l: General view of application development in Grids.

The benefit of the first approach (we term it full-plan-ahead), is that the planner can aim to
optimize the plan based on the entire structure of the DAG, however, because the execution
environment is very dynamic, by the time the tasks in the DAG are eady to execute, the
environment might have changed so much that the execution is now far less optimal.
Additionaly, the data assumed to be at a certain location, might not be longer available and thus
an error would be detected during execution. If the planner constructs full plans, it must be able to
adapt to the changing conditions and to be able to quickly re-plan.

Fault due to the changing environment are far less likely to occur when the executor is given the
freedom to make decisions as it processes the abstract workflow. At the time a task is to be
scheduled, the executor can use the information services to find out about the state of the
resources and the location of the data and make a locally optimal decision. However, because the
executor does ot have globa information about the request it could make potentially expensive
decisions.

For more information, please visit www.isi.edu/~deel man/pegasus.htm or email deelman@isi.edu




Pegasus: Planning for Execution in Grids 11/15/2002

Another approach is deferred scheduling, where the executor and the planner work together to
come up with a plan. The planner provides an abstract workflow description to the executor,
which, when it is ready to schedule a task, contacts the planner and asks for the execution
location for the task. The planner can at that time make a decision, which would take into account
the global information it has. Because the ganner can make decisions at each time a task is
scheduled, it can take many factors into consideration and use the most up-to-date information.
The drawback however, is that the control might be too fine, and can result in high
communication overheads and a large amount of computation due to re-planning.

Clearly, there is no single best solution for al applications, since these can have very different
characteristics. For example, if we consider data-intensive applications, where the overal runtime
is driven by data movement costs, then the full-plan-ahead planner can minimize the overal data
movement by picking appropriate compute resources, resources “close” to the data. An in-time
scheduler can aso schedule computation near the input data but without the knowledge of the
overal data flow it will only try to achieve local optimization and might come up with an
execution which is poor overall.

For applications, which are compute-intensive, in-time-scheduling might be sufficient and
optimal because the best compute resources can be found at a given moment in time and the time
to stage the data is negligible.

Another factor in workflow management is the use of reservations for various resources such as
compute hosts, storage systems and networks. As these technologies advance, we believe that the
role of full-plan-ahead systemswill increase.

Up to now, we have considered only the case where the workflow management system handles
only one request at atime. The problem becomes more complex when the system is required to
optimize across multiple requests and accommodate various usage policies and community and
user priorities. In this case, full-plan-ahead planners have the advantage of being able to optimize
the end-to-end workflows, however till facing the chalenge of being able to react to the
changing system state.

The nature of this problem seems to indicate that the workflow management system needs to be
flexible and adaptable in order to accommodate various applications behavior and system
conditions. Because the understanding of the application’s behavior is crucia to the ability of
planning and scheduling of the execution, application performance models are becoming ever

more necessary.

3 Pegasus Overview

Pegasus, which stands for Planning for Execution in Grids, was developed at 1Sl as part of the
GriPhyN and SCEC/IT projects. Pegasus is a configurable system that can map and execute
complex workflows on the Grid. Currently, Pegasus relies on a full-ahead-planning to map the
workflows. As the system evolves, we will incorporate in-time scheduling and deferred
scheduling.

Pegasus was first integrated with the GriPhyN Chimera system [2]. In that configuration (see
Figure 2), Pegasus receives an abstract workflow (AW) description from Chimera, produces a
concrete workflow (CW), and submits it to DAGMan for execution. The workflows are
represented as Directed Acyclic Graphs (DAGS). AW describes the transformations and data in
terms of their logica names. CW, which specifies the location of the dita and the execution
platforms, is optimized by Pegasus from the point of view of Virtua Data If data products
described within AW are found to be already materiaized (via queries to the Globus Replica
Location Service (RLS)), Pegasus reuses them and thus reduces the complexity of CW. This

For more information, please visit www.isi.edu/~deel man/pegasus.htm or email deelman@isi.edu




Pegasus: Planning for Execution in Grids 11/15/2002

optimization is performed in the “abstract DAG reduction” component. The “Concrete planner”
component then consults the Transformation Catalog [3] to determine the locations where the
computation can be executed. If there are more than one possible location, a location is chosen
randomly. The Concrete Planner aso adds transfer and registration nodes. The transfer nodes are
used to stage data in or out. Registration nodes are used to publish the resulting data products in
the Replica Location Service. They are added if the user requested that al the data be published
and sent to a particular storage location.

Once the resources are identified for each task, Pegasus generates the submit file for Condor-G.
The resulting concrete DAG is sent to DAGMan for execution.

In that configuration, Pegasus has been shown to be successful in mapping workflows for very
complex applications such as the Sloan Digital Sky Survey [4] and the Compact Muon Source

(3.

Chimera

(1) AbstaEct ok o
(DAG)

[1Z) Rezul b

(3 Absirad DAG
MCS Cgrrentjate R ecUest Manaoe
ereratar
(3 Loglal Flie Names
CLF =)
RLS ECTaEkE DAG (1) DAGME dles
4 PhyAce Flie Wames
15 Mok
(FF Nz fmcorcee | (1) DRG0 des o r
DAC
MDS

[5) Pl Az i=cl DA (9] Redued sbh=kad DAS
Abatract and
Cancrete P lanner
73 Loglaa
T malae
= PhyAa
Trarcyamalor: ard
Bieaulon Erurormenl
i makon YWOL Generator L
- L : ; QNI
Tran=fonm ation L
Catalog
[ ] [1#) Log Fles
pm,tiu!
Condoriz !
DA&GMan

For more information, please visit www.isi.edu/~deel man/pegasus.htm or email deelman@isi.edu




Pegasus: Planning for Execution in Grids 11/15/2002

Pegasus uses the Metadata Catalog Service (MCS) [Chervenak, 2002 #1853] , newly developed at
IS, to perform the mapping between application-specific attributes and logical file names of
existing data products. Al-based planning technologies are used to construct both the abstract and
concrete workflows. The abstract and concrete planner model s the application components along
with data transfer and data registration as operators. Each operator’s parameters include the
location where the component can be run. Some of the effects and preconditions of the operators
can capture the data produced by components and their input data dependencies. State
information used by the planner includes a description of the available resources and the files
already registered in the Replica Location Service. The input goal description can include (1) a
metadata specification of the information the user requires and the desired location for the output
file, (2) specific components to be run or (3) intermediate data products.

Pegasus also contains a Virtual Data Language generator that can populate the Chimera catalog
with newly constructed derivations. In this configuration, Pegasus smilarly generates the
necessary submit files and sends the concrete workflow to DAGMan for execution. We have
configured Pegasus to support the LIGO pulsar search. Details about the search can be found in

[61.

(1) Metadats Attroones T |'3)Fuaula

192 Kaladala Allubulex
MC S |21 Muladals

|tiLid ol Eaming Yelusl Allnbulex

Dala Fioduch KMalching

Ihe Faguesl |LFMa) JT—
Haln
|33 Logical Fim Hamex
|LF Mx)

RLS

| D PhyacalF im Mamas

IFFMal s 410 migimmlian 1'4) DAGMan e | Raacuice Talmciian
nimi'ace
1 L
WD S Avalabl Cuiimn | Thilm "“I’."":::I:':’:
19) Concim Im OAG I' Famomilonng
Fapics Talkcin
5 nimi'ace
Concrete Planner In-time scheduler
—— |9b) O wealana | 'n];:':"" | 191 DAGKan ima
Chimera — .
= bmit File
- L ondor- i onitorn
Transformation rﬂ
C atals A
g | WELEL] s oAE | 1183 Lon F Ees
| 123 Emcuion
Enveonmanl inloimalhion Mqﬂ-’\ﬂ'
Inde vnlocpment
Condar-G/f
LAGhan

For more information, please visit www.isi.edu/~deel man/pegasus.htm or email deelman@isi.edu




Pegasus: Planning for Execution in Grids 11/15/2002

ahead to in-time scheduling etc. We also envisage providing the capability to configure the
system to interface to user-defined resource selection and replica selection modules.

Findly, we want to research interactions between Pegasus and resource brokers. In such cases
Pegasus would plan out in broad strokes and the brokers would refine the plans.

Acknowledgments:

The Pegasus system and the Metadata Catalog Service have been developed at ISl by Amit
Agrawal, James Blythe, Gaurang Mehta, Gurmeet Singh and Karan Vahi.

References

[1] J. Frey, T. Tannenbaum, |. Foster, M. Livny, and S. Tuecke, "Condor-G: A Computation
Management Agent for Multi-Institutional Grids," presented at 10th Internationa
Symposium on High Performance Distributed Computing, 2001.

[2] |. Foster, J. Voeckler, M. Wilde, and Y. Zhao, "Chimera: A Virtua Data System for
Representing, Querying, and Automating Data Derivation,” presented at Scientific and
Statistical Database Management, 2002.

[3] E. Deelman, C. Kesselman, and G. Mehta, "Transformation Catalog Design for
GriPhyN," Technical Report GriPhyN-2001-17, 2001.

4] J Annis, Z. Y, J. Voeckler, M. Wilde, S. Kent, and |. Foster, "Applying Chimera Virtua
Data Concepts to Cluster Finding in the Sloan Sky Survey.," presented at
Supercomputing, Baltimore, MD, 2002.

[9] E. Deddman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, A. Arbree, and R.
Cavanaugh, "Mapping Abstract Complex Workflows onto Grid Environments,” in
submission.

[6] E. Deedlman, K. Blackburn, P. Ehrens, C. Kesselman, S. Koranda, A. Lazzarini, G.
Mehta, L. Meshkat, L. Pearlman, K. Blackburn, and R. Williams., "GriPhyN and LIGO,
Building a Virtual Data Grid for Gravitational Wave Scientists,” presented at 11th Intl
Symposium on High Performance Distributed Computing, 2002.

For more information, please visit www.isi.edu/~deel man/pegasus.htm or email deelman@isi.edu




