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Abstract 
 

Scientific workflows play an important role in 
today’s science. Many disciplines rely on workflow 
technologies to orchestrate the execution of thousands 
of computational tasks. Much research to-date focuses 
on efficient, scalable, and robust workflow execution, 
especially in distributed environments. However, many 
challenges remain in the area of data management 
related to workflow creation, execution, and result 
management. In this paper we examine some of these 
issues in the context of the entire workflow lifecycle.   
 
1. Introduction 
 

Scientific applications such as those in astronomy, 
earthquake science, gravitational-wave physics, and 
others have embraced workflow technologies to do 
large-scale science [3]. Workflows enable researchers 
to collaboratively design, manage, and obtain results 
that involve hundreds of thousands of steps, access 
terabytes of data, and generate similar amounts of 
intermediate and final data products. Although 
workflow systems are able to facilitate the automated 
generation of data products, many issues still remain to 
be addressed [22]. These issues exist in different forms 
in the workflow lifecycle [16]. We describe the 
workflow lifecycle as consisting of a workflow 
generation phase where the analysis is defined, the 
workflow planning phase where resources needed for 
execution are selected, the workflow execution part, 
where the actual computations take place, and the 
result, metadata, and provenance storing phase.  

During workflow creation, appropriate input data 
and workflow components need to be discovered. 
During workflow mapping and execution data need to 
be staged-in and staged-out of the computational 
resources. As data are produced, they need to be 
archived with enough metadata and provenance 
information so that they can be interpreted and shared 
among collaborators. This paper describes the 
workflow lifecycle and discusses the issues related to 
data management at each step.  We describe challenge 

problems and, where possible, illustrate them in the 
context of the following applications: the Southern 
California Earthquake Center (SCEC) CyberShake 
[26], an earthquake science computational platform, 
Montage [7], an astronomy application, and Laser 
Interferometer Gravitational-Wave Observatory’s 
(LIGO) binary inspiral search [8], a gravitational-wave 
physics application. These computations, represented 
as workflows, are running on today’s national 
cyberinfrastructure and use workflow technologies 
such as Pegasus [17] and DAGMan [12] to map high-
level workflow descriptions on to the available 
resources and execute the resulting computations. This 
paper describes the challenges, possible solutions, and 
open issues faced when mapping and executing large-
scale workflows on current cyberinfrastructure. We 
particularly emphasize the issues related to the 
management of data throughout the workflow 
lifecycle.  

Figure 1: Data Lifecycle in a Workflow.  
From the point of view of data, the workflow 

lifecycle includes the following transformations (see 
Figure 1): data discovery, setting up the data 
processing pipeline, generation of derived data, 
archiving of derived data and its provenance. Data 
analysis is often a collaborative process or is conducted 
within the context of a scientific collaboration. An 
example of such a large-scale collaboration is the 
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LIGO scientific Collaboration (LSC), which brings 
together physicists from around the world in a joint 
effort to detect gravitational waves emitted by celestial 
objects [6].  In astronomy, projects such as Montage 
develop community-wide image services. In 
earthquake science, scientists bring together 
community models to understand complex wave 
propagation phenomena.  
 
2. Workflow Creation 
 

Data and Software Discovery Scientists in a 
collaboration frequently submit workflows to process 
data sets and derive scientific knowledge. These 
collaborators may submit related workflows and build 
upon earlier work by other scientists. Thus, scientists 
need to be able to discover information about 
workflows that have been run in the past, identify data 
sets of interest, and locate analysis code and workflow 
templates. In the workflow creation stage, they identify 
data sets and analysis code of interest by unique logical 
identifiers or metadata, independent of where these 
data sets or analysis codes may be physically located in 
the distributed environment.  Discovery of data sets, 
application codes, workflow templates, etc., is often 
done by querying various catalogs. Metadata catalogs 
store attributes that describe the contents of data sets. 
Provenance catalogs [28] store information about 
computations and workflows to provide a detailed 
record of how analyses are run, including information 
about inputs to computations, application parameters 
used, calibration values for equipment, versions of 
workflow and analysis software used, etc.  

Community Standards A challenging aspect of 
setting up these discovery catalogs is the need for 
communities to agree on standards for specifying 
metadata and provenance. Often, scientists in an 
application domain spend great effort to agree on a 
metadata ontology that is rich enough to describe the 
meaning of data sets used and generated in the domain. 
Some of the most successful efforts have been made in 
bioinformatics, where scientists are not only defining 
metadata standards but also sharing descriptions of 
services used in workflows as well as workflows 
themselves, for example, as part of myExperiment 
[23]. Similar standards need to be defined in other 
scientific domains, including standards to describe the 
software characteristics, inputs, outputs, versions, etc. 

Metadata Catalogs Many application communities 
have deployed their own metadata catalogs to store and 
query metadata attributes using relational databases or 
RDF triple stores [25], including LIGO and the Earth 

System Grid (ESG) [27], a scientific collaboration that 
supports climate modeling science. The schema for 
these databases corresponds to the metadata ontology 
defined by the community.  Several systems provide 
general metadata catalogs that are independent of 
particular application communities. The Storage 
Resource Broker (SRB) system [33] provides a catalog 
called MCAT that stores metadata and is also used to 
coordinate data accesses, enforce access permissions 
and maintain consistency for replicated data. The 
Metadata Catalog Service [18] provides a set of 
generic and extensible metadata attributes.  Even 
though metadata technologies exist, the biggest 
challenge is for the scientific communities to decide on 
common definitions of terms. 

Data Provenance  Data provenance technologies 
are still being developed [32]. A challenge in the 
provenance area is the ability of users and workflow 
systems to interpret provenance information produced 
by a different or unfamiliar workflow system. To 
facilitate data discovery where data have been 
produced by different systems, an effort to standardize 
on data provenance representation is underway [30, 
31]. Once standards are in place, the challenge for the 
workflow systems will be to implement them.  

Workflow Creation Provenance An interesting 
aspect of workflow creation is the ability to re-trace 
how a particular workflow has been designed, or to 
determine the provenance of the workflow creation 
process. A particularly interesting approach is taken in 
Vistrails [21] where the user is presented with a 
graphical interface for workflow creation and the 
system incrementally saves the state of the workflow 
as it is being designed. As a result, users may re-trace 
their steps in the design process, choose various 
“flavors” of the same workflow and try and retry 
different designs. Another challenge is to be able to 
capture not only the how but the why of the design 
decisions made by the users.  

 
3. Workflow Planning and Execution 
 

Workflow Data and Component Selection During 
workflow creation, scientists specify the applications 
or workflows they want to run and the input data sets 
for these computations using unique logical identifiers. 
In the workflow planning stage, these logical 
identifiers for applications and data must be mapped to 
resources in the distributed environment. For data sets 
that are inputs to workflows or analysis, this requires 
discovering the location of one or more copies of the 
desired data sets, selecting among them, and often 



copying or staging the data sets onto resources where 
computations will run. For analysis codes, this requires 
finding where the code exists and possibly transferring 
the code to the location where the computation will 
run. A scheduler is responsible for selecting among 
available data sets, selecting appropriate computational 
resources to run each task of a workflow, and 
orchestrating the movement of data sets and the 
execution of workflow tasks.  Schedulers or workflow 
mappers need to be able to optimize the workflows 
based on some user-specified criteria [35, 37].  

Data Dependencies In the workflow execution 
stage, an execution manager such as DAGMan keeps 
track of tasks that must run and the dependencies 
among them. Earlier tasks in the workflow may 
produce intermediate data products that are consumed 
by tasks that run later. These intermediate data 
products may need to be staged from the resource 
where the earlier task ran to the resource on which the 
later task will run. The workflow execution system 
delays execution of a particular task until all its input 
data products are available on the computational 
resources where the task will run.  

Challenges of workflow planning and execution 
include finding available resources whose capabilities 
match the requirements of the workflow. This in turn 
requires up-to-date information about the current state 
of each resource, so that computational tasks or data 
transfer jobs are not assigned to resources that are 
already heavily loaded or are temporarily unavailable.  

 
Distributed Data Environment  A major challenge 

in today’s applications is the physical management of 
data in the distributed environment. Although the 
processing power may be available, getting the data to 
that computational resource may be time consuming 
and error-prone. Figure 2 shows the distributed nature 
of scientific data. Most often it is stored in archives and 
staged to the computational sites on demand. In case of 
LIGO, data is kept archived at each computational site 
within the collaboration. If the workflows execute on 
the Open Science Grid [1], data needs to be staged-in 
from one of the LIGO sites. Within the computational 
site, often a cluster, we also distinguish between shared 
storage and storage local to a computational node.  

Identifying the location of desired data sets is a 
challenge in this type of distributed environment. 
Typically, replica location [9, 11] or metadata catalogs 
[18, 33] record mappings from logical identifiers for 
data to one or more physical locations where copies of 
the data sets are stored. Based on knowledge of the 
state of resources (the latency, bandwidth and load of 

storage systems, network bandwidth among nodes, 
etc.) that may be provided by information services 
[13], the workflow planner selects among available 
data replicas. In particular, the planner may try to 
select copies of the data that are “close” to the 
computational resources where workflow tasks will 
run, with respect to network latency or other metrics.  

Figure 2: View of the Distributed Data 
Environment. 

Asynchronous Data Placement It may be 
advantageous for workflow planning and execution 
services to coordinate with data placement services, 
whose role is to move data asynchronously with 
respect to workflow execution with the goal of 
improving the execution time of workflows. For 
example, a workflow engine might provide hints to a 
data placement service about required data sets as well 
as the expected ordering of data set access, based on 
knowledge or dependencies in the workflow. Based on 
these hints, the placement engine can asynchronously 
stage some of the data required by the workflow engine 
onto shared storage resources near where the workflow 
tasks will execute. In earlier work, we demonstrated 
the potential advantage of prestaging data sets that are 
needed for workflow execution [10]. We showed that 
such prestaging of input data reduced the execution 
time of data-intensive workflows considerably.  

In current work, we are exploring a range of data 
placement algorithms for staging data off of storage 
resources after execution is complete as well as for 
prestaging data onto resources before execution begins. 
We are interested in various approaches to the design 
of placement services, ranging from workflow and 
placement services that are tightly integrated to those 
that have relatively little communication or interaction.  

Data Transfer Challenges Workflows rely on a 
variety of data transfer mechanism over the wide area. 
These include such tools as GridFTP [5], the Fast Data 
Transfer (FDT) service [4], and others. In order to 
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support the data transfer needs of their users and load-
balance the requests, many grid installations deploy 
multiple data movement servers targeting the same 
storage system. However, failures and server timeouts 
still occur. We found many such errors when running 
the CyberShake workflows on the TeraGrid [15].  If 
errors occur due to problems accessing the input data, 
another data source (if it exists) can be chosen by the 
workflow system. This data source would be found in a 
data replica catalog either during workflow planning or 
as part of the fall-back mechanisms in the workflow 
execution. In order to deal with failures at the 
destination, a simple retry can be performed by the 
workflow system, or a different data transfer server can 
be chosen for the data movement. Retries are able to 
deal with temporary server overloads, transient 
network failures, and other intermittent problems. 
However, other types of failures are harder to deal 
with. 

Data Storage Challenges When applications access 
Terabyte-size data sets, storage available at the 
execution sites can be a limiting factor for the 
successful data staging and thus for successful 
workflow execution. This problem is particularly 
challenging because there are few systems deployed 
today that support disk space reservation, so 
applications compete with each other for space on a 
first-come-first-serve basis. Even if there are disk 
quotas present on the execution sites, these quotas are 
usually maintained at the Virtual Organization (VO)-
level [20], and therefore, users within the VO compete 
for space. In LIGO, for example, binary inspiral 
workflows require a minimum of 221 GBytes of 
gravitational-wave data and approximately 70,000 
computational workflow tasks [36]. The resources of 
the OSG provide on average 258 GB of shared scratch 
disk space. The shared scratch disk space is used by 
approximately 20 VOs within the OSG. Thus LIGO 
workflows need to be carefully mapped to the available 
OSG resources, and new algorithms are needed to 
manage the size of the workflow data footprint during 
execution. 

It is possible for workflow systems to take into 
account the storage space available at a particular site 
when making task scheduling decisions [34]. The 
workflow system can find out how much space is 
available at a remote site, estimate the amount of space 
needed by the workflow tasks and consider only the 
sites that provide a suitable amount of space for 
resource selection. One of the challenges in this case is 
the ability to receive accurate information from the 
resources. Another challenge is the ability to estimate 

the amount of storage needed for the output data of 
workflow tasks. Also, because the available space can 
change before or while the data transfer is being done, 
workflow systems need to be able to recover from disk 
space failures and re-plan the workflow for execution 
elsewhere. The ability of the workflow system to clean 
up data sets when they are no longer needed can reduce 
the workflow footprint [36] and thus is an important 
factor in successful workflow execution.  

Data Management inside the Resource  In 
distributed environments, clusters are often managed 
by schedulers such as Condor [19] or PBS [24]. As the 
clusters grow larger, the issue of data management 
within the cluster becomes important. If workflow 
tasks access data via the shared file system, then the 
overall application may suffer if the file server 
becomes overloaded.  A solution to this problem is for 
the workflow tasks to compute on data that reside on a 
local disk. The issue is then to provide mechanisms 
within the workflow to perform the staging of data 
from a shared location to the local file system. Most 
resource management systems support a way of 
specifying this type of data staging in the submission 
scripts. In a distributed environment these scripts are 
usually generated automatically by remote submission 
software. The challenge for the workflow system is to 
be able to identify the properties of the remote 
execution site and to pass the appropriate information 
to the submission software.  

Dealing with Data too Large to Move  In some 
cases, the data sets that workflows operate on are too 
large to move efficiently and process at a remote 
location. It is necessary for the workflow scheduling 
algorithms to take this into account when deciding 
which resources to use for the computation. A 
challenge for the algorithms is trying to figure out the 
costs involved in moving the data over the network, 
which can vary greatly based on network load and the 
latency and bandwidth of source and destination 
storage systems. Workflow systems depend on 
monitoring and information systems for current 
information on network and storage performance.   

Virtual Data When dealing with large numbers of 
workflows and large VOs, it is often the case that 
multiple workflows may use the same input data sets 
or intermediate data products. For example, raw data 
managed by a VO is often in a form that needs to be 
calibrated first to be scientifically viable. Thus, many 
workflows incorporate the calibration step in their 
computations. As a result, the intermediate, calibrated 
data can be shared by other workflows and users within 
the collaboration, provided the data are correctly 



tagged with metadata and provenance information. The 
challenge for the workflow system is then to recognize 
when intermediate data already exist; to determine 
whether it is more efficient to access the existing data 
rather than recompute it; and to make use of this 
information to possibly reduce the workflow.  
 
4. Derived Data and Provenance  
 

Both final and intermediate workflow results are 
typically staged out to a permanent storage location. In 
order for this data to be interpretable both by the user 
and his/her colleagues, metadata and provenance 
information about the data need to be stored as well.  

Metadata Management  In some scientific 
disciplines, such as astronomy, there are standard data 
formats [2] that include metadata about an image as 
part of the image file header. Community codes then 
have the obligation to generate and save the metadata 
inside the files they generate. In Montage for example, 
the application reads-in FITS files that contain image 
data and write new images in the same format with 
new metadata included in the header. However, it may 
be difficult to search for specific data by opening and 
reading the files. Thus, additional workflow 
components can be provided to extract and save 
metadata in a metadata catalog. In general, it is very 
difficult for workflow systems to appropriately catalog 
metadata associated with derived data, as there is no 
standard way for software components to generate the 
metadata, and most of the time, the software 
components do not provide any metadata for the 
results.  New capabilities need to be developed for 
communities to define standards and formats. One 
challenge is to determine how to retrofit existing 
legacy codes to provide metadata information, or more 
likely to wrap them with metadata capabilities. 
Another challenge is to have incentives for community 
members to develop new metadata-compliant codes. 

Provenance Management Having metadata 
information is often not sufficient to fully validate 
scientific results or to reproduce them. Additional 
information─provenance information─-is needed to 
support both scientific and engineering reproducibility 
[22]. Provenance captures information about which 
data were used during the workflow execution, which 
software was run, and what were the computing, 
storage, and other resources used to obtain the results. 
Detailed information will include the various 
parameter settings, environmental variables, etc. All 
this information can and should be captured by the 
workflow management system while the workflow is 

executing. In terms of scientific reproducibility, where 
one wants to share and verify their findings with a 
colleague inside or outside the VO, the user may need 
to know what data sets were used, what type of 
analysis and with what parameters. However, in cases 
where the results need to be reproduced “bit-by-bit”, 
more detailed information about the hardware 
architecture of the resources, environment variables 
used, library versions, etc. are needed. Finally, 
provenance can also be used to analyze workflow 
performance, as was done for example in the context of 
CyberShake [15], where the provenance records were 
mined to determine the number of tasks executed, their 
runtime distribution, where the execution took place, 
etc. 

In some cases, the workflow management system 
may modify the executable workflow to the point that 
it is not easy to map between what has been executed 
and what the user specified [14]. As a result, 
information about the workflow restructuring process 
needs to be recorded as well [29]. This information 
allows us not only to relate the user-created and the 
executable workflow but is also the foundation for 
workflow debugging, where the user can trace how the 
specification they provided evolved into an executable 
sub-workflow.  

One of the challenges in managing provenance, and 
especially workflow provenance where the information 
can be significant in size (peta-byte scale), is the ability 
and necessity to determine what to store. Workflow 
management system designers need to work with 
application developers to define the important 
provenance components. Also, some other methods of 
periodically reducing, compressing, and otherwise 
managing provenance information may need to be 
employed. As a result, there is a risk of not having the 
needed information and thus being unable to verify and 
thoroughly analyze it or reproduce it.  Another 
challenge related to the size of provenance is the 
efficient navigation of the information. Tools such as 
PASOA [28] and others are addressing these issues. 
 
5. Conclusions 
 

In this paper we examined the data lifecycle as it 
relates to the scientific workflow lifecycle. We 
discussed challenges in data and software discovery, 
data and component selection, physical data 
movement, and derived data, metadata and provenance 
management. We believe that data management issues 
are critical to scientific workflows, and although many 
technologies and point solutions exist today, much 



work remains to be done in that area. With the advent 
of multi-core processors, data management is 
increasing in importance. The need to bring data 
reliably and fast to where the computation takes place 
is critical. In cases where the cost of data transfer is too 
expensive, we have the need to bring software and the 
necessary computation environment to the data. In 
either case, issues of metadata and provenance, and 
workflow mapping techniques remain. 
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