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Abstract 
 
Utility grids such as the Amazon EC2 cloud and 
Amazon S3 offer computational and storage resources 
that can be used on-demand for a fee by compute and 
data-intensive applications. The cost of running an 
application on such a cloud depends on the compute, 
storage and communication resources it will provision 
and consume. Different execution plans of the same 
application may result in significantly different costs.  
Using the Amazon cloud fee structure and a real-life 
astronomy application, we study via simulation the 
cost performance tradeoffs of different execution and 
resource provisioning plans.  We also study these 
trade-offs in the context of the storage and 
communication fees of Amazon S3 when used for long-
term application data archival. Our results show that 
by provisioning the right amount of storage and 
compute resources, cost can be significantly reduced 
with no significant impact on application performance. 
 
1. Introduction  
Over the years the research community has developed 
a wide spectrum of funding and usage models to 
address the ever growing need for processing, storage, 
and network resources. From locally owned clusters to 
national centers and from campus grids to national 
grids, researchers combine campus and federal funding 
with competitive and opportunistic compute time 
allocations to support their science. In some cases, 
research projects are using their own clusters or pool 
their resources with other communities (for example in 
the Open Science Grid (OSG) [1]), or they apply for 
compute cycles on the national and international 
cyberinfrastructure resources such as those of the 
TeraGrid [2] or the EGEE project [3]. Each of these 
solutions requires a different level of financial 
commitment and delivers different levels of service. 
When a project purchases a cluster, this cluster may be 
expensive but it is fully dedicated to the needs of the 
project. When joining the OSG, a project contributes 

some of their resources to the overall collaboration 
while being able to tap into the capabilities provided 
by other members of the community. The resource 
provider still has control over their own resources and 
may decide on how to share them with others. 
Providers can also potentially gain the capacity 
contributed by other members of the collaboration. 
This system works on the principle that not all the 
resources are needed at the same time, and when a 
project does not need their own resources, these cycles 
are made available to others in the broader 
collaboration.  
 
Another model of computing is delivered by the 
TeraGrid, which is a national-level effort to provide a 
large-scale computational platform for science. Instead 
of funding individual clusters for individual science 
projects, it pools together the financial resources of the 
National Science Foundation to deliver high-
performance computing to a broad range of 
applications. Research projects can apply for 
allocations of compute cycles that allow them to 
execute jobs on particular clusters or across the 
TeraGrid resources. However, the quality of service is 
not routinely guaranteed on the TeraGrid. Although 
reservations [4], and “urgent computing” [5] are 
becoming available, an application may not be able to 
obtain the necessary resources when they are needed 
(for example, advance reservations generally require 
one week advance notice). 
 
A new dimension to the research computing landscape 
is added by the cloud computing business model [6]. 
Based on the economy of scale and advanced web and 
networking technologies, cloud operators such as 
Amazon [7] and Google [8] aim to offer researchers as 
many resources as they need when they need them for 
as long as they need  them. Cloud providers charge 
applications for the use of their resources according to 
a fee structure.  In addition to supporting on-demand 
computing, clouds, which use virtualization 
technologies, enable applications to set up and deploy 



a custom virtual environment suitable for a given 
application. Cloud-based outsourcing of computing 
may be attractive to science applications because it can 
potentially lower the costs of purchasing, operating, 
maintaining, and periodically upgrading a local 
computing infrastructure. 
 
In this paper we ask the question: given the availability 
of clouds, how can an application use them in a way 
that strikes the right balance between cost and 
performance.  In particular we examine the cost of 
running on the cloud in the context of an astronomy 
application Montage [9], which delivers science-grade 
mosaics of the sky to the community composed of both 
professional and amateur astronomers. We want to find 
out what it would mean for a project such as Montage 
to rely on the cloud, such as the one provided by 
Amazon [7] to: 1) handle sporadic overloads of mosaic 
requests, 2) provide resources for all its computations, 
and 3) support both computation and long-term data 
storage. Finally we also ask a domain question: how 
much would it costs to compute the mosaic of the 
entire sky on the cloud.   
 
The rest of the paper is organized as follows: Section 2 
describes the application that motivated this work, 
Section 3 describes the Amazon computational model 
we use for the experiments. Section 4 refines the goals 
of this work, Sections 5 and 6 give an overview of the 
simulator used in the studies and present the results. 
Related work is shown in Section 7. Section 8 
concludes the paper.  
 
2. Motivating Application 
Montage is a general engine for computing mosaics of 
input images [9]. The input images for the mosaics are 
taken from image archives such as the Two Micron All 
Sky Survey (2MASS) [10], Sloan Digital Sky Survey 
(SDSS) [11],  and the Digitized Sky Surveys at the 
Space Telescope Science Institute (STScI, 
http://www.stsci.edu/resources/ ). A service, hosted at 
the Infrared Processing and Analysis Center 
(http://www.ipac.caltech.edu/) provides Montage-
based mosaics on demand. The input to the service is 
the region of the sky whose mosaic is desired, the size 
of the mosaic in terms of square degrees, and other 
parameters such as the image archive to be used etc 
[12]. The input images are first reprojected to the 
coordinate space of the output mosaic, the reprojected 
images are then background rectified and finally 
coadded to create the final output mosaic. Figure 1 
shows the structure of a small montage workflow. The 
tasks in the workflow are depicted by the vertices in 

the graph and the edges represent the data 
dependencies between the tasks in the workflow. The 
numbers in the vertices represent the level of the task 
in the workflow. The tasks that are not data dependent 
on other tasks are designed level one. The level of any 
other task is one plus the maximum level of any of its 
parent tasks. For the montage workflow, all the tasks at 
a particular level are invocations of the same routine 
operating on different input data. For example, the 
tasks at level one are invocations of the routine 
mProject which reprojects an input image to the scale 
defined in an input file called the template header file. 
This header file is used by all the tasks at level one. 
The reprojected images produced by the tasks at level 
one are further processed by the tasks at level two as 
indicated by the edges between the tasks at the two 
levels.  
 
Montage is a data-intensive application. The input 
images, the intermediate files produced during the 
execution of the workflow and the output mosaic are 
of considerable size and require significant storage 
resources. The tasks on the other hand have a small 
runtime of at most a few minutes. Section 6.3 
quantifies the communication to computation ratio of 
the montage workflow. As a result of these 
characteristics, it is desirable to run the montage 
application in a resource rich environment where the 
availability of storage resources can be assured.  
 

 
Figure 1. Montage workflow. 

The Montage mosaic engine  
(montage.ipac.caltech.edu) was funded by NASA's 
Earth Sciences Technology Office, and is maintained 
by IRSA.  By design, the engine preserves the 
calibration and astrometric fidelity of the input images, 
rectifies background radiation to a common level 



across the mosaic, supports all World Coordinate 
System (WCS) projections, and is portable across all 
common *nix platforms. The same code can be run on 
desktops, clusters, grids and supercomputers.  There 
have been over 300 downloads of the source code 
through a click-wrap license issued by Caltech. 
 
3. Computational and Cost Models 
We picked the Amazon services [7] as the basic model. 
Amazon provides both compute and storage resources 
on a pay-per-use basis. In addition it also charges for 
transferring data into the storage resources and out of 
it. As of the writing of this paper, the charging rates 
were: 

• $0.15 per GB-Month for storage resources 

• $0.1 per GB for transferring data into its 
storage system 

• $0.16 per GB for transferring data out of its 
storage system 

• $0.1 per CPU-hour for the use of its compute 
resources.  

There is no charge for accessing data stored on its 
storage systems by tasks running on its compute 
resources. Even though as shown above, some of the 
quantities span over hours and months, in our 
experiments we normalized the costs on a per second 
basis. Obviously, service providers charge based on 
hourly or monthly usage, but here we assume cost per 
second. The cost per second corresponds to the case 

where there are many analyses conducted over time 
and thus resources are fully utilized.  
 
In this paper, we use the following terms: 
application—the entity that provides a service to the 
community (the Montage project), user request—a 
mosaic requested by the user from the application, the 
cloud—the computing/storage resource used by the 
application to deliver the mosaic requested by the user.  
 
Figure 2  illustrates the concept of cloud computing as 
could be implemented for the use by an application. 
The user submits a request to the application, in the 
case of Montage via a portal. Based on the request, the 
application generates a workflow that has to be 
executed using either local or cloud computing 
resources. The request manager may decide which 
resources to use. A workflow management system, 
such as Pegasus [13], orchestrates the transfer of input 
data from image archives to the cloud storage 
resources using appropriate transfer mechanisms (the 
Amazon S3 storage resource supports the REST and 
HTTP transfer protocol [14]). Then, compute resources 
are acquired and the workflow tasks are executed over 
them. These tasks can use the cloud storage for storing 
temporary files. At the end of the workflow, the 
workflow system transfers the final output from the 
cloud storage resource to a user-accessible location.  
 
While the above gives a high-level description of the 
overall process, we present three different 
implementation models that correspond to different 
execution plans for using the cloud storage resources. 
In order to explain these computational models we use 

Figure 2. Cloud Computing for a Science Application such as Montage. 



the example workflow shown in Figure 3. There are 
seven tasks in the workflow numbered from 0 to 6. 
Each task takes one input file and produces one output 
file except for task 6 that takes three input files.  

 
Figure 3. An example workflow. 

We explore three different data management models: 
 
• Remote I/O (on-demand):  For each task we stage 

the input data to the resource, execute the task, 
stage out the output data from the resource and then 
delete the input and output data from the resource. 
This is the model to be used when the 
computational resources used by the tasks have no 
shared storage. For example, the tasks are running 
on hosts in a cluster that have only a local file 
system and no network file system. This is also 
equivalent to the case where the tasks are doing 
remote I/O instead of accessing data locally.   

• Regular: When the compute resources used by the 
tasks in the workflow have access to shared storage, 
it can be used to store the intermediate files 
produced in the workflow. For example, once task 0 
(Figure 3) has finished execution and produced the 
file b, we allow the file b to remain on the storage 
system to be used as input later by tasks 1 and 2. In 
fact, the workflow manager does not delete any files 
used in the workflow until all the tasks in the 
workflow have finished execution. After that files g 
and h which are the net output of the workflow are 
staged out to the application/user and then all the 
files a – h are deleted from the storage resource. As 
mentioned earlier this execution mode assumes that 
there is shared storage that can be accessed from the 
compute resources used by the tasks in the 
workflow. This is true in the case of the Amazon 
system where the data stored in the S3 storage 

resources can be accessed from any of the EC2 
compute resources.  

• Dynamic cleanup: In the regular mode, there might 
be files occupying storage resources even when 
they have outlived their usefulness. For example 
file a is no longer required after the completion of 
task 0 in Figure 3 but it is kept around until all the 
tasks in the workflow have finished execution and 
the output data is staged out. In the dynamic 
cleanup mode, we delete files from the storage 
resource when they are no longer required. This is 
done by Pegasus by performing an analysis of data 
use at the workflow level [15]. Thus file a would 
be deleted after task 0 has completed, however file 
b would be deleted only when task 6 has 
completed. Thus the dynamic cleanup mode 
reduces the storage used during the workflow and 
thus saves money. Previously, we have quantified 
the improvement in the workflow data footprint 
when dynamic cleanup is used for data-intensive 
applications similar to Montage [16].  We found 
that dynamic cleanup can reduce the amount of 
storage needed by a workflow by almost 50%. 
 

4. Study Goals 
The main focus of the paper is to examine the tradeoffs 
of different execution and resource provisioning plans 
for providing science services to a community using 
cloud computing. We pose several questions related to 
the main aim: 
 
Question 1: Assume that an application has a set of 
resources available to them but sometimes it needs 
more resources than it has, so it reaches out to the 
cloud from time to time to meet the additional 
demands. In this case, the application will provision a 
set of resources from the cloud and bring in the data 
and stage the results back to a location where the user 
can access it.  The question is how many processors to 
provision in order to optimize application performance 
while minimizing the monetary cost.  
 
Question 2: Assume that an application has very 
limited computational resources and wants to rely on 
the cloud resources to provide the necessary 
computing power. Also assume that the application 
provisions a certain amount of resources over a period 
of time to sustain the expected computational load.  
That set of resources requested is assumed to be larger 
then the needs of any single computation. Thus the 
requests can run at their full level of parallelism. Here 
the cost is measured only as the cost of the resources 
used by a single request.  We assume that the 
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application would incur the cost of the resources over 
time and would need to decide how much to charge the 
user for a given request.  In this case we are only 
calculating the cost of this request to the application 
and not the premium the application may decide to 
charge on top of it. 
 
Here we also examine two situations: 
Question 2a:  Given that the application has a local 
data archive and just wants to farm out the computing, 
the question is, how much each user request will cost?   
 
Question 2b:  Assume that the application relies fully 
on both the compute and storage services on the cloud.  
Here besides the cost of a particular request, we also 
determine how many requests it would take to make 
the cost of storing the data on the cloud worthwhile. 
The issue is that if you have only a few requests, the 
cost of storing large amounts of data over time can be 
prohibitively expensive, so for a small number of 
requests, it may be cheaper to stage data to the cloud 
on demand. 
 
Question 3:  Finally, we answer a totally application-
focused questions: 1) how much money it would cost 
to generate the mosaic of the entire sky?  This sky 
mosaic based on 2Mass data can be created by 
combining 3,900 plates (mosaics) in three frequency 
bands, each of 4 degrees square; 2) if one calculates a 
mosaic, how long does it make financial sense to store 
it on the cloud rather than recomputed it on demand. 
 
 
5. Simulator Description 
In order to answer the questions raised in the previous 
section, we performed simulations. No actual 
provisioning of resources from the Amazon system 
was done. Simulations allowed us to evaluate the 
sensitivity of the execution cost to workflow 
characteristics such as the communication to 
computation ratio by artificially changing the data set 
sizes. This would have been difficult to do in a real 
setting. Additionally, simulations allow us to explore 
the performance/cost tradeoffs without paying for the 
actual Amazon resources or incurring the time costs of 
running the actual computation. The simulations were 
done using the GridSim toolkit [17]. Certain custom 
modifications were done to perform accounting of the 
storage used during the workflow execution.  
 
We used three Montage workflows in our simulations: 

1. Montage 1 Degree: A Montage workflow for 
creating a 1 degree square mosaic of the M17 

region of the sky. The workflow consists of 
203 application tasks. 

2. Montage 2 Degree: A Montage workflow for 
creating a 2 degree square mosaic of the M17 
region of the sky. The workflow consists of 
731 application tasks. 

3. Montage 4 Degree: A Montage workflow for 
creating a 4 degree square mosaic of the M17 
region of the sky. The workflow consists of 
3,027 application tasks. 

 
These workflows can be created using the mDAG 
component in the Montage distribution. The 
workflows created are in XML format. We wrote a 
program for parsing the workflow description and 
creating an adjacency list representation of the graph 
as an input to the simulator. The workflow description 
also includes the names of all the input and output files 
used and produced in the workflow. The sizes of these 
data files and the runtime of the tasks were taken from 
real runs of the workflow and provided as additional 
input to the simulator.  
 
We simulated a single compute resource in the system 
with the number of processors greater than the 
maximum parallelism of the workflow being 
simulated. The compute resource had an associated 
storage system with infinite capacity. The bandwidth 
between the user and the storage resource was fixed at 
10 Mbps. Initially all the input data for the workflow 
are co-located with the application. At the end of the 
workflow the resulting mosaic is staged out to the 
application/user and the simulation completes. The 
metrics of interest that we determine from the 
simulation are: 
 

1. The workflow execution time. 
2. The total amount of data transferred from the 

user to the storage resource.  
3. The total amount of data transferred from the 

storage resource to the user. 
4. The storage used at the resource in terms of 

GB-hours. This is done by creating a curve 
that shows the amount of storage used at the 
resource with the passage of time and then 
calculating the area under the curve.  

 
6. Results   
Question 1: Cost of running sporadic 
computations on the cloud. 
Here we examine how best to use the cloud for 
individual mosaic requests. We calculate how much 
would a particular computation cost on the cloud, 



given that the application provisions a certain number 
of processors and uses them for executing the tasks in 
the application. We explore the execution costs as a 
function of the number of resources requested for a 
given application. The processors are provisioned for 
as long as it takes for the workflow to complete. We 
vary the number of processors provisioned from 1 to 
128 in a geometric progression. We compare the CPU 
cost, storage cost, transfer cost, and total cost as the 
number of processors is varied. In our simulations we 
do not include the cost of setting up a virtual machine 
on the cloud or tearing it down, this would be an 
additional constant cost. 
 
Montage 1 Degree Square 
The Montage 1 degree square workflow consists of 
203 tasks. Figure 4 shows the execution costs for this 
workflow. The most dominant factor in the total cost is 
the CPU cost. The data transfer costs are independent 
of the number of processors provisioned. The Figure 
shows that the storage costs are negligible as compared 
to the other costs. The Y-axis is drawn in logarithmic 
scale to make the storage costs discernable. As the 
number of processors is increased, the storage costs 
decline but the CPU costs increase. The storage cost 
declines because as we increase the number of 
processors, we need them for shorter duration since we 
can get more work done in parallel. Thus we also need 
storage for shorter duration and hence the storage cost 
declines. However, the increase in the CPU cost far 
outweighs any decrease in the storage costs and as a 
result the total costs also increase with the increase in 
the number of provisioned processors. The graph 
shows the storage costs with (Storage Costs (C)) and 
without cleanup (Storage Costs) as described in 
Section 3. The storage costs with cleanup are slightly 
less than the storage costs with cleanup. The total costs 
shown in the Figure are computed using the storage 
costs without cleanup. The total cost with cleanup is 
very similar and virtually indistinguishable in the 
figure if drawn. The total costs shown in the graphs are 
aggregated costs for all the resources used.  
 
Based on Figure 4, it would seem that provisioning the 
least amount of processors is the best choice, at least 
from the point of view of monetary costs (60 cents for 
the 1 processor computation versus almost 4$ with 128 
processors). However, the drawback in this case is the 
increased execution time of the workflow. Figure 4 
(bottom) shows the execution time of the Montage 1 
Degree workflow with increasing number of 
processors. As the Figure shows, when only one 
processor is provisioned leading to the least total cost, 
it also leads to the longest execution time of 5.5 hours.  

The runtime on 128 processors is only 18 minutes. 
Thus a user who is also concerned about the execution 
time, faces a trade-off between minimizing the 
execution cost and minimizing the execution time.  

  

 
Figure 4. Execution Costs and Execution time for Montage 1 

Degree Workflow. 

  
Figure 5. Execution Costs and Execution time of Montage 2 

Degree Workflow. 



Montage 2 Degree Workflow 
Figure 5 shows similar results for the Montage 2 
degree workflow as for the Montage 1 degree 
workflow. The total cost is an increasing function of 
the number of the allocated processors while the 
execution time is a decreasing function of the number 
of allocated processors. The Montage 2 degree 
workflow consists of 731 tasks.  At the extremes, the 
cost of running the workflow on 1 processor is $2.25 
with a runtime of 20.5 hours whereas running the same 
workflow on 128 processors results in a runtime of less 
than 40 minutes with a cost of less than $8.  
 

  
Figure 6. Execution Costs and Execution time of Montage 4 

Degree Workflow. 

Montage 4 Degree Workflow 
Figure 6 show similar results for the Montage 4 degree 
workflow as for the Montage 2 degree and Montage 1 
degree workflow. The Montage 4 degree square 
workflow consists of 3,027 application tasks in total.  
In this case running on 1 processor costs $9 with a 
runtime of 85 hours; with 128 processors, the runtime 
decreases to 1 hour with a cost of almost $14. 
Although the monetary costs do not seem high, if one 
would like to request many mosaics to be done, as 
would be in the case of providing a service to the 
community, these costs can be significant. For 
example, providing 500 4-degree square mosaics to 
astronomers would cost $4,500 using 1 processor 
versus $7,000 using 128 processors.  However, the 
turnaround of 85 hours may be too much to take by a 
user. Luckily, one does not need to consider only the 
extreme cases. If the application provisions 16 

processors for the requests, the turnaround time for 
each will be approximately 5.5 hours with a cost of 
$9.25, and thus a total cost of 500 mosaics would be 
$4,625, not much more than in the 1 processor case, 
while giving a relatively reasonable turnaround time. 
 
Question 2a: Cost of relying on the cloud for 
all computing needs  
Here we examine the issue of the cost of user requests 
for scientific products when the application provisions 
a large number of resources from the cloud and then 
allows the request to use as many resources as it needs. 
The application is in this scenario responsible for 
scheduling the user requests onto the provisioned 
resources.  In this case, since the processor time is used 
only as much as needed, we would expect that the data 
transfer and data storage costs may play a more 
significant role in the overall request cost. As a result, 
we examine the tradeoffs between using three different 
data management solutions: 1) remote I/O, where tasks 
access data as needed, 2) regular, where the data are 
brought in at the beginning of the computation and 
they and all the results are kept for the duration of the 
workflow, and 3) cleanup, where data no longer 
needed are deleted as the workflow progresses. In the 
following experiments we want to determine the 
relationship between the data transfer cost and the data 
storage cost and compare it to the overall execution 
cost. 
 
Figure 7  (top) shows the amount of storage used by 
the workflow in the three modes in space-time units. 
The least storage used is in the remote I/O mode since 
the files are present on the resource only during the 
execution of the current task. The most storage is used 
in the regular mode since all the input data transferred 
and the output data generated during the execution of 
the workflow is kept on the storage until the last task 
in the workflow finishes execution. Cleanup reduces 
the amount of storage used in the regular mode by 
deleting files when they are no longer required by later 
tasks in the workflow.  
 
Figure 7  (middle) shows the amount of data transfer 
involved in the three execution modes. Clearly the 
most data transfer happens in the remote I/O mode 
since we transfer all input files and transfer all output 
files for each task in the workflow. This means that if 
the same file is being used by more than on job in the 
workflow in the remote I/O mode the file may be 
transferred in multiple times whereas in the case of 
regular and cleanup modes, the file would be 
transferred only once.  



The amount of data transfer in the Regular and the 
Cleanup mode are the same since dynamically 
removing data at the execution site does not affect the 
data transfers. We have categorized the data transfers 
into data transferred to the resource and data 
transferred out of the resource since Amazon has 
different charging rates for each as mentioned in 
Section 3. As the figure shows, the amount of data 
transferred out of the resource is the same in the 
Regular and Cleanup modes. The data transferred out 
is the data of interest to the user (the final mosaic in 
case of Montage) and it is staged out to the user 
location. In the Remote I/O mode intermediate data 
products that are needed for subsequent computations 
but are not of interest to the user also need to be stage-
out to the user-location for future access. As a result, in 
that mode the amount of data being transferred out is 
larger than in the other two execution strategies. 
 

 
Figure 7.  Data Management Metrics for the Montage 1 degree 

Workflow. 

Figure 7 (bottom) shows the costs (in monetary units) 
associated with the execution of the workflow in the 
three modes and the total cost in each mode. The 
storage costs are negligible as compared to the data 
transfer costs and hence are not visible in the figure. 
The Remote I/O mode has the highest total cost due to 
its higher data transfer costs. Finally, the Cleanup 
mode has the least total cost among the three. It is 

important to note that these results are based on the 
charging rates currently used by Amazon. If the 
storage charges were higher and transfer costs were 
lower, it is possible that the Remote I/O mode would 
have resulted in the least total cost of the three.  
 
Figure 8 and Figure 9 show the metrics for the 
Montage 2 and 4 degrees workflow respectively. The 
cost distributions are similar for all the workflows and 
differ only in magnitude as can be seen from the 
figures. 

  

 
Figure 8.  Data Management Metrics for the Montage 2 degree 

Workflow. 

 
The total cost shown in Figures 7-9 does not include 
the CPU cost of running the workflow tasks on 
Amazon EC2 resources. Figure 10 compares the CPU 
cost of these workflows with the other costs shown in 
earlier figures (aggregated and shown as DM, Data 
Management costs in Figure 10). As the figure shows, 
the CPU cost is slightly higher than the data 
management costs for the remote I/O execution mode. 
The CPU cost is invariant between the three execution 
modes (Remote I/O, Regular, CleanUp) shown in the 
earlier figures.  
 
In these experiments we ignore limitations on the 
granularity of Amazon fee structure in time and 
assume the least possible granularity i.e $ per Byte-



seconds for storage, $ per Bytes for transfers and $ per 
CPU-second for compute resources.   
 

 

Figure 9.  Data Management Metrics for the Montage 4 degree 
Workflow. 

 
Figure 10. The CPU and other costs of the execution of Montage 

Workflows. 

If we compare these results with the costs we observed 
in the case of provisioning a fixed amount of resources 
for the duration of the workflow request (Question 1), 
we see that these costs are significantly different. For 
example, the cost of running the 4 degree square 
Montage workflow on 128 processors is $13.92 in the 
provisioned case, whereas the workflow which is 
charged only for the resources used is only $8.89. The 
maximum parallelism of that workflow is 610. This 
shows that CPU utilization can be low in the 
provisioned case.  
 
Impact of the Communication to Computation 
Ratio on the Cost of the Request 
Obviously, Montage is only one of a number of 
scientific applications that can potentially benefit from 
cloud services.  Here we also explored the costs of 
applications that would have different communication 
(data) to computation ratios (CCR).  The CCR of a 
workflow is defined as follows. Let F = {f1, f2,…,fk} 
be the set of files used or produced in the workflow 
and let s(fi) denotes the size of file i in bytes. Let V = 
{v1, v2, …, vn} be the set of task in the workflow and 
let r(vi) denotes the runtime of task vi in seconds on a 
standard reference CPU. Let B be reference bandwidth 
in bytes per second. Then the CCR of a workflow (V, 
F) is 
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The CCR of the Montage workflow computed by this 
equation and based on a bandwidth B of 10 Mbps is 
shown in the table below. 
 

Workflow CCR 
Montage 1 Degree 0.053 
Montage 2 Degree 0.053 
Montage 4 Degree 0.045 

 
For the set of experiments described in this section, we 
change the CCR of the Montage workflows by 
appropriately scaling the file sizes in the workflow. 
For example, let CCRd be the desired CCR and CCRr 
be the real CCR of the workflow. Then we multiply 
each file size by CCRd/CCRr to get the desired CCR.  
 
Figure 11 shows the execution costs for the Montage 1 
Degree workflow with changing CCR. For these 
experiments, we provision 8 processors for as long as 
required to execute the workflow. 8 processors were 
chosen since they represent a reasonable compromise 



between the execution cost and execution time as seen 
in Section 6.1.  
 
As the CCR increases, we see that the storage costs, 
both with and without cleanup increase. The transfer 
costs which were constant earlier also increase due to 
the increase in the size of the data. The workflow 
execution time increases since it takes longer to stage 
in the input data. The CPU cost also increase due to 
increase in the execution time of the workflow. As a 
result, the total cost is also an increasing function of 
the CCR.  

Figure 11. Execution costs of Montage 1 Degree workflow with 
changing CCR. 

The results for the Montage 2 and 4 degree workflows 
are similar to the 1 degree workflow and hence not 
shown here. From these experiments we can see that 
the transfer and storage costs increase in proportion to 
the increase in CCR or even higher (for the storage 
costs). Thus it seems that it may be beneficial to pre-
store all the input data in the cloud in order to reduce 
the transfer costs as the applications become more 
data-intensive. In the next section, we examine the use 
of the cloud for data archival purposes. 
 
Question 2b: Cost of running and storing data 
on the cloud 
In this section we answer the question of benefit of 
relying on the cloud to do computing and to store the 
large datasets required to do science. In the case of 
Montage, one of important datasets is the 2Mass data 
(2 Micron all sky survey 
http://www.ipac.caltech.edu/2mass/releases/allsky/), 
which contains images of the entire sky in three 
different bands.  The size of entire data set is 12 
Terabytes. If we were to store the entire collection on 
the cloud, the application would benefit from low data 
access latencies (for input data) and the cost of these 
accesses would be zero. However, the cost of storing 
the data can be significant and equal to 12,000 × $0.15 
= $1,800 per month. The cost of producing a 2 degree 
square mosaic when the input data are already 

available in the cloud is $2.12 which includes a $2.03 
CPU cost (Figure 10) and $0.09 data management cost 
as storage charges for the temporary files during the 
execution run and the transfer charges for transferring 
the final mosaic to the user.  The cost of the mosaic 
that has to bring in the data from outside the cloud is 
$2.22 (Figure 10).  Thus in order to be able to 
overcome the storage costs, users would need to 
request at least $1,800/($2.22-$2.12) = 18,000 mosaics 
per month.   These figures to do not include the initial 
cost of transferring the data to the cloud, which would 
be an additional $1,200 at ($0.1 per GB). This cost 
would only be incurred once and would need to be 
amortized over time. A possibly better solution is to 
pre-stage some popular data sets. This would require 
application developers to analyze their requests 
patterns and where possible discover trends.  
 
Question 3: Cost of large-scale science on the 
cloud 
In this section, we examine the cost of creating the 
mosaic of the entire sky. This can be done by making a 
complete set of mosaics covering every region of the 
sky (with some overlap). Roughly it would translate to 
about 3,900 4-degree-square mosaics or about 1,734 6-
degrees-square mosaics.   
 
The cost of creating a 4 degrees square mosaic in 
regular mode was $8.88 (Figure 10). Thus the total 
cost would be 3,900 x $8.88 = $34,632. If we assume 
that the input data is already archived in the cloud, 
then the execution cost of the 4 square degree mosaic 
is $8.75 leading to a total cost of 3,900 x $8.75 = 
$34,145.   
 
Another interesting question is whether it makes 
economic sense to archive the generated popular 
mosaics in the cloud instead of always generating them 
on demand from the basic input data. For the 1 degree 
Montage workflow the CPU cost was 56 cents (Figure 
10). This cost can be totally saved by just storing the 
mosaic which had a size of (173.46 MB) and serving it 
again when another similar request is received. For the 
cost of 56 cents, this mosaic can be stored for 21.52 
months assuming storage charges of $0.15 per GB-
month. Similarly the size of the 2 square degree 
mosaic is 557.9 MB and the CPU cost for creating it 
was $2.03 cents. For this cost, the mosaic can be stored 
for 24.25 months. Similarly the size of the 4 square 
degree mosaic is about 2.229 GB and the CPU cost for 
creating it is $8.40. At this cost, the mosaic can be 
stored for 25.12 months. Thus in summary, if it is 
likely that the same request would be repeated with the 



next two years, then it would make economic sense to 
store the generated mosaic instead of recomputing it.  
Therefore, it would be cost effective to save popular 
mosaics of the sky (areas such as those around Orion 
for example) in the cloud. 
 
7. Related Work 
There has been many proposals for Grid systems that 
operate using market mechanisms such as Grace [18], 
Spawn [19], Tycoon [20] among others. However, 
Amazon Web Services is among the first providers that 
have made computational and storage resources 
commercially available on pay per use basis on a 
production level. IBM has a cloud computing initiative 
underway called Blue Cloud [21]. There are other 
storage providers that cater to niche markets such as 
Nirvanix [22] that optimizes storage for media files. 
Some recent work have focused mainly on the 
performance issues related with these services [23]. 
There has not been much work on the classification 
and quantification of the execution costs of scientific 
applications on these systems. 
 
Cost-aware execution of workflow structured 
applications have been addressed previously [24, 25]. 
The model in [24] however, is a futures-based resource 
market model whereas in the case of Amazon services, 
all the resources are available for immediate 
occupancy and there is no concept of advance 
reservations [25]. Previously, we have explored the 
performance cost tradeoff while provisioning resources 
for workflows [26]. However, in that study we did not 
take storage resources into consideration. Cost-based 
scheduling of scientific applications has also been 
addressed in [27]. In [27], the model is of service 
providers that undertake to execute individual tasks in 
the application at different prices. In our case we 
allocate computational resources from providers. 
Individual tasks are executed by transferring the 
executable program to the compute resource and then 
invoking it using the proper arguments. Thus, resource 
providers are agnostic to the tasks being executed on 
their resources and only charge for the occupancy of 
their resources.  
 
The question of what resources to provision has also 
been investigated in earlier works. In [28] the optimal 
size of the resource request to make is considered in 
order to minimize the workflow completion time. The 
cost of the resources however is not taken into 
consideration. In a number of earlier works [29, 30] 
the size of the resource request is optimized so that the 
sum of the wait time to get the requested resource and 

the run time of the application on the resource is 
minimized. With the advent of cloud computing that 
provides resources on demand these issues become 
irrelevant as there is no wait time involved to get the 
resources. It is possible that as the demand for the 
cloud resources increases, it might increase beyond 
supply and the resource providers would then have to 
deal with admission control issues [31, 32]. In these 
cases, when there are advance purchase discounts, the 
completion time of the workflow would be an 
important criterion to consider. 
 
8. Conclusions   
Cloud computing offers a new business model for 
supporting computations and provides a new option for 
scientific applications to have on-demand access to 
potentially significant amounts of compute and storage 
resources.  Using the Montage application and the 
Amazon EC2 fee structure as a case study, we showed 
that for a data-intensive application with a small 
computational granularity, the storage costs were 
insignificant as compared to the CPU costs. Thus it 
appears that cloud computing offers a cost-effective 
solution for data-intensive applications. 
 
Clouds are still in their infancy--there are only a few 
commercial  [7, 21, 22] and academic providers [33].  
As the field matures, we expect to see a more diverse 
selection of fees and quality of service guarantees for 
the different resources and services provided by 
clouds. It is possible that some providers will have a 
cheaper rate for compute resources while others will 
have a cheaper rate for storage and provide a range of 
quality of service guarantees. As a result, applications 
will have more options to consider and more execution 
and provisioning plans to develop to address their 
computational needs.   
 
In this paper, we explored only one aspect of using 
cloud computing for science, examining the tradeoffs 
of different workflow execution modes and 
provisioning plans for cloud resources. Many other 
aspects of the problem still need to be addressed. 
These include the startup cost of the application on the 
cloud, which is composed of launching and 
configuring a virtual machine and its teardown, as well 
as the often one-time cost of building a virtual image 
suitable for deployment on the cloud. The complexity 
of such an image depends on the complexity of the 
application. We also did not explore other cloud issues 
such as security and data privacy. The reliability and 
availability of the storage and compute resources are 
also an important concern. According to Amazon 



sources, the targeted availability of the S3 storage 
system is 99.9% [34] which is also verified by 
independent studies [23]. However, when the system 
goes down, as it did twice in the first 7 months of 
2008, the possible impact on the applications can be 
significant.  Due to the mainly commercial nature of 
cloud computing, there are expectations and penalties 
resulting from any violation of the user-provider 
contract are clearly spelled out [34]. These and other 
issues such as scalability of the new computing 
paradigm are still open questions.   
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