Grids and Clouds: Making Workflow
Applications Work in Heterogeneous
Distributed Environments

Ewa Deelman

USC INFORMATION SCIENCES INSTITUTE, MARINA DEL
REY, CA 90292, USA
(DEELMAN@ISI.EDU)

Abstract

Scientific workflows are frequently being used to model
complex phenomena, to analyze instrumental data, to tie
together information from distributed sources, and to pur-
sue other scientific endeavors. Out of necessity, these
complex applications need to execute in distributed envi-
ronments and make use of a number of heterogeneous
resources. In this paper we describe some of these appli-
cations and illustrate techniques that improve their per-
formance and reliably in distributed environments, such as
grids and clouds. Although clouds were first introduced in
the business arena, they have a potential to be provide on-
demand resources for scientific computations.

Key words: scientific workflows, grid computing, cloud com-
puting, applications, heterogeneous distributed environ-
ments

The International Journal of High Performance Computing Applications,
Volume 00, No. 0, xxxxxx 2009, pp. 000—000

DOI: 10.1177/1094342009356432

© The Author(s), 2009. Reprints and permissions:
http://www.sagepub.co.uk/journalsPermissions.nav

Figures 1-5 appear in color online: http://hpc.sagepub.com

International Journal of High Performance Computing Applications OnlineFirst, published on December 4, 2009 as do0i:10.1177/1094342009356432

1 Introduction

Many scientific applications are “born distributed”; data
are collected at different locations, stored, and replicated
across wide area networks, software components are devel-
oped to target different execution environments, computing
resources and services are distributed and heterogeneous,
and collaborators share their expertise and pursue research
goals while being separated by geographic distance. Scien-
tific workflows are being used to bring together these var-
ious resources and answer complex research questions.
They describe the relationship of the individual computa-
tional components and their input and output data in a
declarative way. In astronomy, scientists are using work-
flows to generate science-grade mosaics of the sky (Mon-
tage, n.d.), to examine the structure of galaxies (Taylor et
al. 2003), and in general to understand the structure of the
universe. In bioinformatics, they are using workflows to
understand the underpinnings of complex diseases (Ste-
vens et al. 2003; Oinn et al. 2006). In earthquake science,
workflows are used to predict the magnitude of earthquakes
within a geographic area over a period of time (Deelman et
al. 2006a). In physics, workflows are used to try to measure
gravitational waves (Brown et al. 2006) and model the
structure of atoms (Piccoli, 2008). In ecology, scientists
explore the issues of biodiversity (Jones et al. 2005).

Today, workflow applications are running on the
national and international cyberinfrastructure, such as the
Open Science Grid (OSG, n.d.), the TeraGrid (2004), Ena-
bling Grids for E-sciencE (EGEE, n.d.), and others. These
infrastructures allow access to high-performance resources
over wide area networks. The broad spectrum of distributed
computing provides unique opportunities for large-scale,
complex scientific applications. In addition to the large-
scale cyberinfrastructure, applications can target a campus
cluster, or utility computing platforms such as commercial
(Amazon Elastic Compute Cloud, n.d.; Google App Engine,
n.d.) and academic clouds (Nimbus Science Cloud, n.d.).
However, these opportunities also bring with them many
challenges. It is hard to decide which resources to use and
for how long. It is hard to determine what the cost/benefit
tradeoffs are when running in a particular environment. It
is also difficult to reach good performance and reliability
for an application on a given system.

In this paper, we describe a number of scientific work-
flow applications, their goals, and the challenges they
face executing in a distributed environment. We also
describe a number of techniques that have been used to
achieve good performance and reliability in grid envi-
ronments and reflect on their use in clouds. Finally, we
examine some open questions.

The rest of the paper is organized as follows. Sections 2
and 3 describe a number of workflow-based applications,
their characteristics, and the execution environment they
target. Section 4 describes how the applications are mapped

Table 1

Characteristics of Montage Workflows of Different Sizes.

Size of the mosaic ~ Number of input Number of Number of Total data Approx. execution time
in degrees square data files jobs intermediate files footprint (20 procs)

1 53 232 588 1.2GB 40 min

2 212 1,444 3,906 5.5GB 49 min

4 747 4,856 13,061 20 GB 1hr 46 min

6 1,444 8,586 22,850 38 GB 2 hr 14 min

10 3,722 20,652 54,434 97 GB 6 hr

onto the distributed environment. The challenges involved
in the mapping and execution are described in Section 5.
Section 6 describes related work and Section 7 concludes
the paper.

2 Workflow Applications

There are a growing number of scientific workflow appli-
cations (Bharathi et al. 2008) and workflow systems (Tay-
lor et al. 2006; Deelman et al. 2008a). In this section we
describe some applications that make use of scientific
workflow technologies and, in particular, of our Pegasus
Workflow Management System (Pegasus-WMS) (Deel-
man et al. 2005, 2006b; Pegasus, n.d.).

2.1 Providing a Service to a Community

Montage (Berriman et al. 2003, 2004; Montage, n.d.) is
an astronomy application that generates science-grade
mosaics of the sky, based on the user request. The goal of
the Montage application is to make raw data (images of
the sky) and derived data (mosaics of images) available
to a broad range of users. These can be professional or
amateurs astronomers. Montage has its own computing
resources that include cluster and a storage system to
archive the raw data and requested mosaics. Thus, a

number of mosaic requests can be handled locally.
However, as the system becomes more successful and
users request more images, or for large requests (for
large areas of the sky) the Montage project needs to
rely on shared cyberinfrastructure resources to provide
the corresponding capabilities. Recently, the project also
started investigating the possibility and costs of running
the workflows on utility computing environments, such as
the Amazon Cloud (Berriman et al. 2008; Deelman et
al. 2008b). Although the current Amazon pricing struc-
ture is prohibitively expensive to host large (12 TB) data
archives (at the cost of US$1,800 per month), it can be
used to process large-scale mosaics at reasonable costs
(~US$10).

The mosaics are constructed using a workflow whose
characteristics are shown in Table 1. The inputs to the
workflow include the input images in standard Flexible
Image Transport System (FITS, n.d.) format (a file for-
mat used throughout the astronomy community) taken
from image archives, such as the Two Micron All Sky
Survey (2MASS) (Skrutskie et al. 1997), and a “template
header file” that specifies the mosaic to be constructed.
The input images are first reprojected to the coordinate
space of the output mosaic, the reprojected images are
then background rectified and finally coadded to create
the final output mosaic (see Figure 1).

Project

Background

Add

Diff —»{ Fitplane /

> Diff —{ Fitplane \
Project \ BgModel [—{Background

Project /

v

Background

Fig. 1 A sketch of the montage workflow.

Table 2

Data and CPU Requirements for the CyberShake Components, per Site of Interest.

Component Computation type Data CPU hours
Mesh generation MPI 15 GB 150
SGT simulation MPI 40 GB 10,000
SGT extraction Single processor 1GB 250
Seismogram synthesis Single processor 10 GB 6,000
PSA calculation Single processor 90 MB 100
Totals 66 GB 17,000

2.2 Supporting Community-based Analysis

The Southern California Earthquake Center (SCEC, 2006)
project uses workflow technologies to develop physically
based shake maps of the Southern California area. SCEC
researchers are developing physics-based models of earth-
quake processes and integrating these models into a sci-
entific framework for seismic hazard analysis and risk
management. These seismic simulations are leading toward
a physics-based, model-oriented approach to earthquake
science with the eventual goal of transforming seismology
into a predictive science with forecasting capabilities sim-
ilar to those available today in the areas of climate mode-
ling and weather forecasting.

To characterize the earthquake hazards in a region,
seismologists and engineers utilize the Probabilistic Seis-
mic Hazard Analysis (PSHA) technique (Graves, 2008).
PSHA attempts to quantify the peak ground motions from
all possible earthquakes that might affect a particular site
(geographic location) and to establish the probabilities that
the site will experience a given ground motion level over a
particular time frame. PSHA information is used by city
planners and building engineers and is often the basis for
defining building codes in a region.

Up to now, PSHA techniques have not fully integrated
the recent advances in earthquake simulation capabilities.
Probabilistic seismic hazard curves have been calculated
using empirically based attenuation relationships that repre-
sent relatively simple analytical models based on the
regression of observed data. However, it is widely believed
that significant improvements in PSHA will rely on the use
of more physics-based waveform modeling.

The goal of the CyberShake project (Maechling et al.
2006) is to bring the physics-based modeling for PSHA
calculation into the mainstream. CyberShake calculations
consist of two main parts. Firstly, a message-passing inter-
face (MPI)-code is run to calculate volumetric datasets
called strain Green tensors (SGTs). Secondly, a large-scale
post-processing calculation is done in which hundreds of
thousands of serial jobs process the SGTs. The serial jobs

often have short run times on the order of seconds. The
SCEC project uses Pegasus to run CyberShake workflows
on the National Science Foundation (NSF) TeraGrid. A
single CyberShake workflow consists of approximately
800,000 jobs (Callaghan et al. 2008). Table 2 summarizes
the data footprint and computational requirements of the
CyberShake workflows.

The workflow characteristics of SCEC-like applica-
tions are that codes are collaboratively developed by a
number of project scientists. These codes are then “strung”
together to model complex systems. Some of the main chal-
lenges for these types of applications are the ability to cor-
rectly connect components, not only at a syntactic but also
at a semantic level, and to be able to achieve scalability,
both in the size of workflows that can be run and in the
number of workflows that constitute the greater analysis.

2.3 Processing Large Amounts of Shared Data on
Shared Resources

Today, science experiments collect large amounts of data,
easily reaching Terabyte scales. One such project is the
Laser Gravitational-Wave Observatory (LIGO; Barish and
Weiss, 1999). LIGO is a network of gravitational-wave
detectors, one located in Livingston, LA and two co-
located in Hanford, WA. The observatories' mission is to
detect and measure gravitational waves predicted by gen-
eral relativity — Einstein's theory of gravity — in which
gravity is described as due to the curvature of the fabric of
time and space. One well-studied phenomenon that is
expected to be a source of gravitational waves is the inspiral
and coalescence of a pair of dense, massive astrophysical
objects, such as neutron stars and black holes. Such binary
inspiral signals are among the most promising sources for
LIGO. Gravitational waves interact extremely weakly with
matter, and the measurable effects produced in terrestrial
instruments by their passage will be miniscule. In order to
increase the probability of detection, a large amount of
data, which contains the strain signal that measures the
passage of gravitational waves, needs to be acquired and

analyzed. LIGO applications often require on the order of
a terabyte of data to produce meaningful results (Ram-
akrishnan et al. 2007; Singh et al. 2007).

Data from the LIGO detectors is analyzed by the
LIGO Scientific Collaboration (LSC), which possesses
many project-wide computational resources. Additional
resources would allow the LSC to increase its science
goals. Thus, the LSC has been reaching out toward grid
deployments, such as the OSG, to extend their own capa-
bilities. A scientifically meaningful run of the binary
inspiral analysis requires a minimum of 221 GB of gravi-
tational-wave data and approximately 70,000 computa-
tional workflow tasks (Brown et al. 2006).

Some of the challenges faced by LIGO are the capture
of data generated by various instruments and their cata-
loging in community data registries (Chervenak et al.
2005). The amounts of data that need to be processed may
exceed the computational capabilities of the LIGO Data
Grid and thus workflows need to be able to run in a
number of different environments. At the same time, in
order to be able to manage the number of computations,
issues of automation, scalability, and reliability are critical.

2.4 Automating the Work of Single Scientist

Members of smaller organizations, or even single scien-
tists, can also benefit from workflow technologies. In

particular, issues such as the automation of data process-
ing, as well as obtaining flexibility and maintenance of
the data processing pipelines, are very important. An
example of such a project is the University of Southern
California (USC) Epigenome Center, which is analyzing
human DNA sequences (Juve et al. 2009). The Center is
currently using the Illumina Genetic Analyzer (GA) sys-
tem to generate high throughput DNA sequence data (up
to 8 billion nucleotides per week) to map the epigenetic
state of human cells on a genome-wide scale.

The Center is using workflow technologies to support
these epigenomic sequencing efforts. The workflow shown
in Figure 2 consists of seven basic steps that (1) transfer
sequence data to the cluster storage system, (2) split
sequence files into multiple parts to be processed in par-
allel, (3) convert sequence files to the appropriate file
format, (4) filter out noisy and contaminating sequences,
(5) map sequences to their genomic locations, (6) merge
output from individual mapping steps into a single global
map, and (7) use sequence maps to calculate the sequence
density at each position in the genome. The Center is cur-
rently using this workflow to process its production of
DNA methylation and histone modification data. While
the workflow currently implements the minimum
requirements to effectively analyze the data, additional
planned quality control and checkpoint steps will make
the pipeline more robust.

| 3 w
———
- 3 —
y & /
. ¥ e &
3 : . .
:‘a-.‘"
b e

e

%

Fig.2 Epigenomic workflow (computational jobs are shown as circles, data transfer jobs as rhomboids).

Table 3
Characteristics of Four Different Applications.

Number of Average task Size of input Size of Size of output
workflow tasks runtime data intermediate data data
CyberShake ~800,000 100s of seconds 1GB 10s of GB 100s of MBs
Epigenomics ~600 450 tasks at 1-10 s, ~400 MB 3GB ~3 MB
150 tasks at 160 min
LIGO’s inspiral ~70,000 From 10s of seconds ~700 MB up ~10 MB up ~10 MB up to
to 100s of seconds to~1.5TB to ~200 MB ~200 MB
Montage ~200 10s of seconds 100s of MB 1GB 350 MB

(1 degree square)

In addition to automation and flexibility in analysis
modification, scientists are using workflow technologies
to automatically record how the data was produced (track
its provenance; IPAW, 2006).

2.5 High-level Application Characteristics

Although these applications differ greatly and their com-
putational characteristics can differ based on the problem
size, Table 3 shows task and data characteristics for some
typical workflow configurations. These do not mean to
represent exact numbers for individual tasks (as in Bhar-
athi et al. (2008)), but rather are coarse-grained approxi-
mations.

Obviously, optimizing the execution of this wide range
of applications can be difficult. However, some chal-
lenges are common: dealing with short-running jobs that
need to be sent for execution (typically over the wide area
network) to a batch resource, managing the data used and
generated during the execution, and of course providing
reliability. We demonstrate some approaches to these chal-
lenges in Section 5.

3 Execution Environment

Today’s applications are running on local clusters, cam-
pus clusters, grids, or more recently science and commer-
cial clouds. Applications access their resources either
directly or across the wide area network, using remote
submission interfaces and data transfer mechanisms (see
Figure 3). In this figure we distinguish the application
host that resides in the user domain and the other systems
that form the shared cyberinfrastructure. The grid pro-
vides different modes of resource usage. For example in
OSG, when a project joins the collaboration, it contrib-
utes some of its resources to the overall collaboration
while being able to tap into the capabilities provided by
other members of the community. The resource provider
still has control over their own resources and may decide

on how to share them with others. Providers can also
potentially gain the capacity contributed by other mem-
bers of the collaboration. This system works on the prin-
ciple that not all resources are needed at the same time,
and when a project does not need their own resources,
these cycles are made available to others in the broader
collaboration. Another model of computing is delivered by
the TeraGrid, which is a national-level effort to provide a
large-scale computational platform for science. Instead
of funding individual clusters for individual science
projects, it pools together the financial resources of
NSF to deliver high-performance computing to a broad
range of applications and communities. Research projects
can apply for allocations of compute cycles that allow
them to execute jobs on particular clusters or across the
TeraGrid resources.

The new cloud technologies can also potentially pro-
vide benefits to today’s science applications. Clouds have
recently appeared as an option for on-demand computing.
Originating in the business sector, clouds can provide
computational and storage capacity when needed, which
can result in infrastructure savings for a business. When
using the cloud, applications pay only for what they use in
terms of computational resources, storage, and data trans-
fer in and out of the cloud. Clouds are also emerging in the
academic arena, providing a limited number of computa-
tional platforms on demand (Cumulus (Wang et al. 2008),
Eucalyptus (Nurmi et al. 2008), Nimbus (n.d.), OpenNeb-
ula (Moreno-Vozmediano et al. 2009), etc.) These Sci-
ence Clouds present a great opportunity for researchers to
test out their ideas and harden their codes before investing
more significant resources and money into the potentially
larger-scale commercial infrastructure. Through the use
of virtualization, clouds can be made to look like a grid
site, as they can be configured (with additional work and
tools) to look like a remote cluster, presenting interfaces
for remote job submission and data stage-in. As such, sci-
entists can use their existing grid software and tools to get
their science done.

Application/
Workflow Management
System
host

Distributed Resources:
Open Science Grid
TeraGrid

Resource Information and Data Location Information

Computations

NMI: Globus MDS, RLS, SRB

Vendor-
specific
API

Commercial and
Science Clouds

Local Cluster

|
& & &
Storage Storage

and Data Lelr
Management
. . Storage
Grid Site
s
o PBS
(2]
=}
3 LSF
O
Condor
GridF TP
HTTP
Storage

Fig. 3 Overview of the distributed execution environment.

Virtualization also opens up a greater number of
resources to legacy applications. These applications are
often very brittle and require a very specific software
environment to execute successfully. Today, scientists
struggle to make the codes that they rely on for weather
prediction, ocean modeling, and many other computa-
tions work on different execution sites. No one wants to
touch the codes that have been designed and validated
many years ago for fear of breaking their scientific qual-
ity. Clouds and their use of virtualization technologies
may make these legacy codes much easier to run. Now,
the environment can be customized with a given operating
system (OS), libraries, software packages, etc. The needed
directory structure can be created to anchor the applica-
tion in its preferred location without interfering with other
users of the system. However, in order to make good use
of such environments, scientists need to be able to figure

out how many resources they need, for how long, and
what would be the associated costs.

Another interesting and differentiating aspect of the
cloud is that by default it includes resource provisioning
as part of the usage mode. This can potentially improve the
performance of workflow-based applications. Although
provisioning is sometimes made available on the grid, it is
often done via verbal agreements between users and
resource providers. When using automated resource-pro-
visioning techniques, such as Condor Glide-ins (n.d.), the
resource availability is bounded by the wallclock time
allowed on the resource and thus can be very limiting.
Thus, for example, running persistent services on the grid
is difficult; this is much easier done on the cloud where
there are no time limits on the use of the resources.

Table 4 shows the execution environments used by the
applications described in this paper. Although these appli-

Table 4
Example Application Execution Environments.

Local/campus cluster Community grid National grid
Epigenomics Yes No No
LIGO Yes LIGO grid OSG
Montage Yes No No
SCEC Yes No TeraGrid

cations are not using clouds today, they are evaluating
their benefits and drawbacks.

4 Mapping the Application to the
Resources

Given the multitude of different execution environments,
it is important to develop applications, such as scientific
workflows, in a resource-independent way and then rely
on tools to map these applications onto a specific execu-
tion environment. In our work, we have been developing
Pegasus-WMS to do that mapping. Pegasus-WMS (Deel-
man et al. 2006b) is a framework that maps complex,
resource-independent scientific workflow descriptions
onto distributed resources. As a result, scientists do not
need to worry about the details of the underlying cyberin-
frastructure or the particulars of the low-level specifica-
tions required by the cyberinfrastructure middleware
(Condor (Litzkow et al. 1988), Globus (n.d.)), or the Ama-
zon EC2 application programming interface (API) (Ama-
zon Elastic Compute Cloud, n.d.). Pegasus dynamically
discovers the available execution resources, and performs
a mapping based on the execution requirements of the
codes and data. Pegasus uses different scheduling algo-
rithms to make these choices, based on information on the
predicted execution time of the tasks and data access as
well as on information about the resources. Pegasus can
target resources such as campus clusters, the TeraGrid
(2004), OSG (n.d.), and others. Pegasus relies on the Con-
dor Directed Acyclic Graph Manager (DAGMan) work-
flow engine (DAGMan, 2004; Couvares et al. 2006) to
launch workflow tasks and maintain the dependencies
between them. Recently, Pegasus has been used to map
workflows onto clouds, such as the Amazon EC2 (Juve et
al. 2009; Amazon Elastic Compute Cloud, n.d.) and the
Nimbus Science Cloud (Hoffa et al. 2008; Nimbus Sci-
ence Cloud, n.d.). As part of the mapping, Pegasus auto-
matically manages data generated during workflow
execution by staging them out to user-specified locations,
by registering them in data catalogs, and by capturing
their provenance information.

Sometimes workflows as structured by scientists are
not tuned for performance. In addition, given that at the

time of the workflow generation the eventual execution
resources are not known, it is impossible to optimize the
runtime of the overall workflow. Since Pegasus dynami-
cally discovers the available resources and their character-
istics, and queries for the location of the data (potentially
replicated in the environment), it improves the performance
of applications through: data reuse to avoid duplicate com-
putations and to provide reliability, workflow restructur-
ing to improve resource allocation, and automated task
and data transfer scheduling to improve overall workflow
runtime. Pegasus also provides reliability through dynamic
workflow remapping when failures during execution are
detected. Currently, Pegasus-WMS is able to map and
execute earthquake science workflows composed of a
million of tasks on today’s cyberinfrastructure, such as
the TeraGrid (Callaghan et al. 2008).

5 Selected Challenges in Executing
Workflows on Cyberinfrastructure

There are many challenges in executing workflows in
distributed environments. We can think of challenges
related to:

1. timely and accurate information gathering about
the distributed resources;

2. efficient and scalable management of the work-
flow mapping and execution processes;

3. dealing with the limitations of the existing middle-
ware or hardware (for example available memory);

4. efficient workflow tasks scheduling onto batch
systems;

5. managing data transfer and storage;

6. application and resource failures.

Here we illustrate some issues and solutions when dealing
with these challenges and refer to these issues throughout
the remainder of this section.

5.1 Performance

The size of workflows such as CyberShake taxes the mem-
ory available on the application host. That machine is

Workflow

Original i
Described In a
Workflow Recursive Way
() (b)

Order of Planning and Execution of
the workflow

(©

Fig. 4 Providing hierarchical structure to Pegasus-WMS workflows.

used to map the workflow onto the resources and to man-
age its execution. One particular issue arises when trying
to parse the workflow specification. Because the work-
flow is specified in extensible markup language (XML),
the in-memory parsing operation can fail or take a very
long time due to limited memory (issues 2 and 3 above).
In order to overcome these issues, the workflow can be
partitioned (possibly recursively) so that only portions of
the workflow are planned at a time. The user can thus
describe their workflow in a hierarchical way and Pegasus-
WMS maps and executes the resulting sub-workflows.
Figure 4 illustrates this approach. In Figure 4(a), we see an
original workflow without a hierarchical structure. For
such a workflow the Pegasus-WMS would plan the work-
flow and execute all the jobs in the order indicated in the
workflows. Figure 4(b) shows the same workflow but
described with one level of nesting. Figure 4(c) is an illus-
tration of how the Pegasus-WMS would map and exe-
cute the nested workflow. It would plan and execute the
subworkflow #1 (which contains a single task). After
its successful execution, it would then in parallel plan
and execute the subworkflows labeled #2, each contain-
ing two tasks. After these tasks finished it would plan
and execute the last subworkflow (#3). Since Pegasus-
WMS now works on smaller portions of the workflow at

a time, much larger workflows, on the order of a million
of jobs, can now be handled. As a result, SCEC is able
to run their workflows at the desired scale (Callaghan
2008).

The size of the workflows and the number of jobs that
need to be managed on the application host can often
bring up the load on that machine to unacceptable levels
(issue 3). One technique that has proven beneficial in this
case is to cluster workflow jobs together into larger entities.
This clustering is performed by Pegasus when it maps com-
putational workflow tasks onto the execution resources. If
there is a set of tasks (destined for the same execution site)
that can be clustered together without breaking workflow
dependencies (if the path between any two tasks in a clus-
ter is fully contained within the cluster), then they can be
treated as one task at the application host, as one task for
the purposes of sending the jobs to the remote cluster and
as one task in the queue at the remote scheduler. The
clustered tasks are wrapped by a script that can invoke
the tasks sequentially or in parallel (according to the
tasks inter-dependencies) at the remote end.

Task clustering not only reduces the load on the machine
handling remote job submission, but it also has been
shown to improve the overall workflow performance for
fine computational granularity applications by as much as

90% (Singh et al. 2008) (issue 4). Although so far cluster-
ing had been studied on the grid, clustering techniques
would also be applicable in the cloud environment.
Although users would typically not compete for the same
resource (so queue delays would be small), the overheads
of handling many small tasks would cause performance
degradation. In addition, some computing systems are con-
figured to view the submission of a large number of jobs
or data transfer requests as denial of service attacks and
automatically block the user executing the workflow.

Deciding on the right size of the clusters is still a chal-
lenging problem. If clusters are too small, the benefits of
clustering are limited as the number of jobs that need to
be managed is not significantly reduced. If clusters are
too large then the workflow can be more vulnerable to
failures. If a failure occurs within a cluster, then the
entire cluster needs to be re-computed.

5.2 Resource Provisioning

Another technique used to improve the overall workflow
performance (issue 4) is resource provisioning (Sfiligoi,
2007; Walker and Guiang, 2007; Juve and Deelman,
2008; Walker, 2008; condor_glidein, n.d.) ahead of the
workflow execution. In most grid infrastructures, task
execution is performed on a best-effort basis and many
applications are scheduled ad hoc or may use a range of
scheduling methods: static user-defined resource selec-
tion, random, or heuristic-based approaches (Mandal et al.
2005). None of the current methods are adequate in today’s
execution environments, where the execution time and
availability of resources are uncertain (issue 1). By har-
nessing the execution environment, however, the behavior
of applications can be more predictable. One important
technique in this regard is resource provisioning.

Resource provisioning is particularly useful for work-
flow-based applications, where overheads of scheduling
individual, inter-dependent tasks in isolation (as it is done
by grid clusters) can be very costly. For example, if there
are two dependent jobs in the workflow, the second job
will not be released to a local resource manager on the
cluster until the first job successfully completes. Thus, the
second job will incur additional queuing time delays. In
the provisioned case, as soon as the first job finishes, the
second job is released to the local resource manager and
since the resource is dedicated, it can be scheduled right
away. Thus, the overall workflow can be executed much
more efficiently. In our previous work, we found that
resources provisioned before application execution can
provide the desired execution platform and result in suc-
cessful application execution that improves the overall
application performance (Singh et al. 2006). Scientists are
also interested in exploring the capabilities of the cloud
for their work. Unlike the grid, where jobs are often exe-

cuted on a best-effort basis, when running on the cloud a
user requests a certain amount of resources and has them
dedicated for a given duration of time. (An open question
in today’s clouds is how many resources can be given to
any one request at any given time and how fast.)

5.3 Reliability

The importance of data management is often overlooked
when managing applications in distributed environments,
yet it plays a very important role in application reliability,
performance, and cost (issues 5 and 6). Data-intensive
workflows can easily fail, because there is not enough
space to stage the needed data or to save the results. Even
if a workflow executes successfully, the transfer of results
back to the user can often fail. In cloud environments, it
is important to estimate the amount of data needed to be
provisioned in a virtual image so that the workflow has
“room to grow”. The cost of storage and data transfer
also needs to be considered. The cost of storing data in
commercial cloud storage solutions and transfers of data
in and out of the cloud can become significant over time.

Sometimes, solutions to the problems can be simple.
For example, for data-intensive workflows that generate
large numbers of small files, zipping these files at the
execution site before sending the data over the network
can greatly improve the reliability of data transfers over
the wide area network (Callaghan et al. 2008).

In other cases, more complex solutions need to be
developed. For example, one solution to minimizing the
amount of disk storage needed by a workflow is to remove
the data from the execution sites as soon as it is not
needed. In the extreme, data can be removed as soon as
they are consumed by a workflow component (see remote
input/output (I/0) in the following section). However, this
may require that data be staged in again if another work-
flow component needs them as well. As a result, overall
workflow performance may suffer. Another approach is
to automatically analyze data usage within the workflow
and remove the data when it is no longer needed by any
subsequent workflow tasks (Ramakrishnan et al. 2007)
(see dynamic cleanup in the following section). This
approach can result in as much as 50% improvement in
the workflow data footprint for some applications (Mon-
tage, for example). However, the success of the approach
depends on the structure of the workflow. Some work-
flows access input data at the beginning of the workflow
and also later on in the workflow execution (for example,
the LIGO inspiral workflow (Brown et al. 2006)). As a
result, the input data needs to be kept on the execution
system for a longer period of time and the workflow data
footprint is large. In some cases, with additional effort
and more detailed analysis, the workflow can be restruc-
tured to reduce that footprint.

b g‘

(a) Abstract Workflow (b) Regular

Rx = Read file x

Ao e

W>x= Write file x

(c) Dynamic Cleanup (d) Remote /O

Cx = Cleanup file x

Fig. 5 Different modes of data management.

In addition to minimizing the workflow data footprint,
it can be beneficial from the point of reliability to sched-
ule workflow tasks in such a way that the task’s input and
output data fit into the storage available at the execution
sites (issues 5 and 6). However, it is hard to get accurate
and timely information about the amount of storage
available to a user (storage is often shared among a col-
laboration and information services at the execution sites
are limited). In addition, even if the amount of storage is
known, its availability is not guaranteed during the exe-
cution time of a task as other users or applications can fill
up the available disk space. The provisioning of storage
would help with the problems; however, only limited
storage reservation solutions exist in grid environments
(Shoshani et al. 1998).

In commercial clouds, and in particular on the Amazon
Cloud, both opportunistic and provisioned storage is
available. The Amazon S3 storage service provides sig-
nificant storage resources on the pay-for-what-you-use
basis without storage provisioning capabilities. Ama-
zon also provides storage provisioning capabilities via
the Elastic Block Store (EBS). Storage volumes can be
created in a number of sizes up to 1 TB each and
mounted on the virtual computational resources. How-
ever, this storage provisioning comes at a price. Users
pay for the whole amount of storage provisioned over

time, independent of the amount of data stored on the
volume.

5.4 Data Management and Performance Costs

In clouds, the issue of the cost of data management does
not only occur in the cost of storing the data on the stor-
age system, but also in the data transfer costs and in the
CPU cost incurred by the application (issues 2 and 5).
Deelman et al. (2008b) examined the cost of three differ-
ent workflow data management strategies developed for
Pegasus (see Figure 5). These include the following:

¢ Regular: When the compute resources used by the
tasks in the workflow have access to shared storage, it
can be used to store the intermediate files produced in
the workflow. For example, once task 0 (Figure 5(b))
has finished execution and produced the file b, we
allow the file b to remain on the storage system to be
used as input later by tasks 1 and 2. In fact, the work-
flow manager does not delete any files used in the
workflow until all the tasks in the workflow have fin-
ished execution. After that file d, which is the net out-
put of the workflow, is staged out to the application/
user and all files a—d are deleted from the storage
resource. This execution mode assumes that there is

shared storage that can be accessed from the compute
resources used by the tasks in the workflow. This is
true in the case of the Amazon system where the data
stored in the S3 storage resources can be accessed
from any of the EC2 compute resources.

* Dynamic cleanup: In the regular mode, there might be
files occupying storage resources even when they have
outlived their usefulness. For example, file a is no
longer required after the completion of task 0, but it is
kept around until all the tasks in the workflow have
finished execution and the output data is staged out. In
the dynamic cleanup mode, we automatically delete
files from the storage resource when they are no longer
required. This is done by Pegasus by performing an anal-
ysis of data use at the workflow level (Ramakrishnan et
al. 2007). Thus, file a would be deleted after task O has
completed; however, file b would be deleted only when
task 2 has completed (Figure 5(c)). The dynamic cleanup
mode potentially reduces the storage used during the
workflow and thus can save money

* Remote I/O (on-demand): For each task we stage the
input data to the resource, execute the task, stage out
the output data from the resource and then delete the
input and output data from the resource (Figure 5(d)).
This is the model to be used when the computational
resources used by the tasks have no shared storage. For
example, the tasks are running on hosts in a cluster
where they have only a local file system and no net-
work file system. This is also equivalent to the case
where the tasks are doing remote I/O instead of access-
ing data locally.

Although the amount of disk space used by the remote I/O
is the smallest of the three strategies, the amount of data
transfers that occur in the workflow is costly (because of
fees for transferring data to/from the cloud) and slows
down the overall workflow execution. Thus, the workflow
application incurs greater CPU and data transfer costs.
Since CPU costs are the dominant factor in the overall
execution cost of many applications, the overall cost of
the workflow is the greatest for the remote I/O case.
Although there are savings in the cost of storage when
doing dynamic cleanup versus the regular mode of exe-
cution, these costs are relatively insignificant compared
to the overall workflow cost. Thus, for many applications
running on clouds, using the regular mode of data man-
agement may be best in general.

5.5 Managing Multiple Workflows

Up to now, most workflow management systems manage
a single workflow at a time. However, much of scientific
enquiry does not rely on the execution of a single work-
flow, but rather on the execution and synthesis of results

from many workflows (issue 2). Thus, it is important to
develop new systems that can provide the management
of any number of simultaneous workflows. In our work,
we developed an initial version of the Ensemble Manager
(EM, n.d.) that accepts collections workflows — or work-
flow ensembles that define a single analysis. Simple pri-
orities can be assigned to the individual workflows and to
the workflow ensembles to give preference to the most
pressing computations. For example, in the case of hurri-
cane modeling workflows (Plale et al. 2006), some hurri-
cane paths are more probable than others and should be
explored first. Other paths based on less likely parame-
ters may be less critical and can wait for execution. The
EM is built on top of Condor (n.d.) and provides basic
functionality, including submitting, executing, and kill-
ing and monitoring of a set of workflows, as well as pro-
viding hints to the system on the relative importance of
the various workflows in a collection and across collec-
tions. The EM also has the concept of a workflow start
where a workflow can be submitted to the system with a
given start time.

Being able to manage multiple workflows concurrently
may provide the benefits of better resource usage through
the ability of scheduling more tasks into under-utilized
resources. This in turn may also improve the overall cost
of using commercial cloud resources.

6 Related Work

There are many workflow systems in existence today,
each addressing some aspect of the workflow manage-
ment problem (Taylor et al. 2006; Deelman et al. 2008a).
Workflow systems can be broadly divided into ones that
support the composition of standalone applications and
those that support the composition of services. Much of
the work in industry has focused on the definition of
standard workflow languages, such as Business Process
Execution Language (BPEL; Andrews et al. 2003), and
on the development of workflow engines capable of exe-
cuting BPEL-specified workflows (Active BPEL Engine,
2007; Microsoft Workflow Foundation, 2007). Some sci-
ence disciplines, in particular bioinformatics, are using
BPEL and BPEL-like workflow specifications to orches-
trate the services that are available in their communities
(Miles et al. 2004; Oinn et al. 2006; Slominski, 2006).
Expressing applications as services is not applicable in
many scientific disciplines, where performance and scal-
ability are critical and where the service invocation over-
heads are simply too expensive. Thus, the workflows are
often expressed as workflows of standalone applications.
There are many workflow systems that support application
component composition and execution. Some, such as Tri-
ana (Churches et al. 2006), Kepler (Ludéscher et al. 2005),
and VisTrails (Callaghan et al. 2006), provide graphical

user interfaces for workflow composition and some,
such as Karajan (Laszewski and Hategan, 2006), provide
a scripting language to specify the workflow. Some of
these workflow systems support more complex control
structure loops, conditionals, and hierarchical workflow
definitions. However, in our hierarchical workflow we
can not only capture the workflow structure (as in the
other systems), but we also use it to order and time the
mapping of the portions of the workflow to the computa-
tional resources.

Today, not many workflow systems perform work-
flow-level optimization and resources scheduling; rather
they rely on the user to select resources or services.
Among such workflow systems are Kepler, Taverna, and
VisTrails. However, in the case of Taverna, the user can
provide a set of services that match a particular workflow
component, so if errors occur, an alternate service can be
automatically invoked. Some workflow management
systems, such as P-GRADE (Kertész et al. 2006), use an
external broker to schedule tasks onto resources. The
Askalon system (Wieczorek et al. 2005), designed to sup-
port task-level workflows, has a rich environment for map-
ping workflows onto resources. It not only does the
resource assignment, but can also automatically provision
the resources ahead of the workflow execution. Askalon
contains two major components responsible for work-
flow scheduling: the scheduler and the resource manage-
ment system (GridARM). GridARM serves as a data
repository that provides the scheduler with all the infor-
mation needed for scheduling, including the available
resources and the applications deployed on the Grid.
Apart from the basic functionalities, GridARM can also
provide more advanced resource and application discov-
ery techniques based on quality-of-service matching, and
it can guarantee advance reservation of resources. In order
to support the scheduler, Askalon has developed a per-
formance analysis and prediction system that can estimate
the runtime of the workflow tasks, as well as the data
transfer times of data between tasks. The scheduler makes
full-graph scheduling of scientific workflows. Askalon
can also support workflow transformation techniques to
improve performance. However, unlike our approach,
Askalon focuses on simplifying the conditional struc-
tures present in its workflows. Among the optimization
transformations are techniques employed in parallel
compilers and include branch prediction, parallel loop
unrolling, and sequential loop elimination. If the choices
made during the transformation (such as branch predic-
tion) are erroneous, the workflow is adjusted and resched-
uled at runtime. Once the Directed Acyclic Graph (DAG)
is created, it is mapped onto the available resources based
on a scheduling algorithm.

7 Conclusions

In this paper we delineated some of the challenges faced
by workflow applications when they are executing in dis-
tributed environments, such as the grid or more recently
the cloud. We based our observations on our experi-
ences with a number of scientific applications and with
the Pegasus-WMS. Although much progress has been
made to make the execution of applications more effi-
cient and more reliable, major challenges still remain.
High-level systems, such as workflow systems, can mask
some of the complexity of the underlying infrastructure
through abstract interfaces and fault-recovery mechanism.
Howeyver, the latter are still limited and face the difficulties
of interpreting the faults occurring throughout the distrib-
uted system and through the many levels of software used
to manage them. Thus, at times, the user is faced with a
number of cryptic messages being sent from distributed
middleware and is often unable to determine what went
wrong. Thus, it is critical that more work be done in the
area of improving middleware and providing sophisti-
cated, yet easy to use, debugging facilities for distributed
applications. Usability also remains a big concern. Up to
now, most of the users of distributed systems have been
astronomers, climate modelers, physicists, and other
physical scientists familiar with computing paradigms and
computing systems. However, more and more researchers
from less computationally focused domains are reaching
out to distributed systems for their work. This move is
underway because these researchers rely on distributed
data and distributed collaborations to do their work.
Thus, providing user-friendly and user-centered compu-
tational capabilities is becoming increasingly critical.

Acknowledgements

This work was funded by the NSF under Cooperative
Agreement OCI-0438712 and grant # CCF-0725332. This
work would not be possible without the collaboration with
the following people: Ben Berman (USC), Bruce Ber-
riman (Caltech), Kent Blackburn (Caltech), Duncan
Brown (Syracuse University), Britta Daudert (Caltech),
Gideon Juve (USC), Phil Maechling (USC), Gaurang
Mehta (USC), Karan Vahi (USC), and many others.

Author’s Biography

Ewa Deelman is a Research Associate Professor at the
USC Computer Science Department and a Project Leader
at the USC Information Sciences Institute (ISI). Her
research interests include the design and exploration of
collaborative, distributed scientific environments, with
particular emphasis on workflow management as well as
the management of large amounts of data and metadata.

At the ISI, she is leading the Pegasus project, which
designs and implements workflow mapping techniques
for large-scale workflows running in distributed environ-
ments. She received her PhD from Rensselaer Polytech-
nic Institute in Computer Science in 1997 in the area of
parallel discrete event simulation.

References

Active BPEL Engine. (2009). http://www.activevos.com/com-
munity-open-source.php

Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J.,
Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S.,
Trickovic, I. and Weerawarana, S. (2003). Specification:
business process execution language for Web Services
Version 1.1, http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel/

Barish, B. C. and Weiss, R. (1999). LIGO and the detection of
gravitational waves. Phys Today 52: 44.

Berriman, B., Bergou, A., Deelman, E., Good, J., Jacob, J.,
Katz, D., Kesselman, C., Laity, A., Singh, G., Su, M.-H.
and Williams, R. (2003). Montage: a grid-enabled image
mosaic service for the NVO. In the Proceedings of Astro-
nomical Data Analysis Software & Systems (ADASS) XIII.

Berriman, G. B., Deelman, E., Good, J., Jacob, J., Katz, D. S.,
Kesselman, C., Laity, A., Prince, T. A., Singh, G. and Su,
M.-H. (2004). Montage: a grid enabled engine for deliver-
ing custom science-grade mosaics on demand. In Proceed-
ings of SPIE Conference 5487: Astronomical Telescopes.

Berriman, G. B., Good, J. C., Deelman, E., Singh, G. and
Livny, M. (2008). A cost benefit study of doing astro-
physics on the cloud: production of image mosaics. In the
Proceedings of Astronomical Data Analysis Software and
Systems (ADASS).

Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H.
and Vahi, K. (2008). Characterization of scientific work-
flows. In Proceedings of the 3rd Workshop on Workflows
in Support of Large-Scale Science (WORKSO08).

Brown, D. A., Brady, P. R., Dietz, A., Cao, J., Johnson, B. and
McNabb, J. (2006). A case study on the use of workflow
technologies for scientific analysis: gravitational wave
data analysis. In Workflows for e-Science, edited by I.
Taylor, E. Deelman, D. Gannon and M. Shields, Springer.

Callaghan, S., Maechling, P., Deelman, E., Vahi, K., Mehta, G.,
Juve, G., Milner, K., Graves, R., Field, E., Okaya, D.,
Gunter, D., Beattie, K. and Jordan, T. (2008). Reducing
time-to-solution using distributed high-throughput mega-
workflows — experiences from SCEC CyberShake. In Pro-
ceedings of the 4th IEEE International Conference on e-
Science (e-Science 2008), Indianapolis, IN.

Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva,
C.T. and Vo, H. T. (2006). VisTrails: visualization meets
data management. In the Proceedings of ACM SIGMOD.

Chervenak, A., Schuler, R., Kesselman, C., Koranda, S. and
Moe, B. (2005). Wide area data replication for scientific
collaborations. In Proceedings of the 6th IEEE/ACM Inter-
national Workshop on Grid Computing, pp. 1-8.

Churches, D., Gombas, G., Harrison, A., Maassen, J., Robin-
son, C., Shields, M., Taylor, I. and Wang, 1. (2006). Pro-
gramming scientific and distributed workflow with Triana
services. Concurrency Comput. Pract. Ex. 18: 1021-1037.

Condor. http://www.cs.wisc.edu/condor

condor_glidein. http://www.cs.wisc.edu/condor/glidein.

Couvares, P., Kosar, T., Roy, A., Weber, J. and Wenger, K.
(2006). Workflow management in Condor. In Workflows in
e-Science, edited by I. Taylor, E. Deelman, D. Gannon and
M. Shields, Springer, pp. 357-375.

DAGMan (Directed Acyclic Graph Manager). (2004). http://
www.cs.wisc.edu/condor/dagman/

Deelman, E., Callaghan, S., Field, E., Francoeur, H., Graves, R.,
Gupta, N., Gupta, V., Jordan, T. H., Kesselman, C., Mae-
chling, P., Mehringer, J., Mehta, G., Okaya, D., Vahi, K.
and Zhao, L. (2006a). Managing large-scale workflow exe-
cution from resource provisioning to provenance tracking:
the CyberShake example. In E-SCIENCE '06: Proceedings
of the 2nd IEEE International Conference on e-Science
and Grid Computing, p. 14.

Deelman, E., Gannon, D., Shields, M. and Taylor, 1. (2008a).
Workflows and e-Science: an overview of workflow sys-
tem features and capabilities. Future Generat. Comput Syst,
doi:10.1016/j.future.2008.06.012.

Deelman, E., Mehta, G., Singh, G., Su, M.-H. and Vahi, K.
(2006b) Pegasus: mapping large-scale workflows to dis-
tributed resources. In Workflows in e-Science, edited by 1.
Taylor, E. Deelman, D. Gannon and M. Shields, Springer.

Deelman, E., Singh, G., Livny, M., Berriman, B. and Good, J.
(2008b). The cost of doing science on the cloud: the Mon-
tage example. In the Proceedings of SC'08, Austin, TX.

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kessel-
man, C., Mehta, G., Vahi, K., Berriman, G. B., Good, J.,
Laity, A., Jacob, J. C. and Katz, D. S. (2005). Pegasus: a
framework for mapping complex scientific workflows
onto distributed systems. Sci. Program. 13: 219-237.

Enabling Grids for E-sciencE (EGEE). http://www.eu-egee.org/

Ensemble Manager. http://pegasus.isi.edu/ensemble/

Flexible Image Transport System. http://fits.gsfc.nasa.gov/

Globus. http://www.globus.org

Google App Engine. http://code.google.com/appengine/

Graves, R. (2008). Physics based probabilistic seismic hazard
calculations for Southern California. In Proceedings of the
14th World Conference on Earthquake Engineering Bei-
jing, China.

Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K.,
Berriman, B. and Good, J. (2008). On the Use of cloud
computing for scientific workflows. In Proceedings of the
3rd International Workshop on Scientific Workflows and
Business Workflow Standards in e-Science (SWBES), in
conjunction with the 4th IEEE International Conference
on e-Science (e-Science 2008), Indianapolis, IN.

IPAW (2006). Provenance and Annotation of Data, Interna-
tional Provenance and Annotation Workshop (IPAW
2006), Chicago, IL, May 3-5, Revised Selected Papers.

Juve, G. and Deelman, E. (2008). Resource provisioning options
for large-scale scientific workflows. In Proceedings of the
3rd International Workshop on Scientific Workflows and
Business Workflow Standards in e-Science (SWBES), in

conjunction with the 4th IEEE International Conference
on e-Science (e-Science 2008), Indianapolis, IN.

Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Ber-
man, B. P. and Maechling, P. (2009). Scientific work-
flow applications on Amazon EC2. In Cloud Computing
Workshop in Conjunction with e-Science, Oxford, UK:
IEEE.

Kertész, A., Sipos, G. and Kacsuk, P. (2006). Brokering multi-
grid workflows in the P-GRADE portal. In the Proceed-
ings of Euro-Par 2006: Parallel Processing, vol. 4375,
Berlin: Springer.

Laszewski, G. v. and Hategan, M. (2006). Workflow concepts
of the Java CoG kit. J. Grid Comput 3: 239-258.

Litzkow, M., Livny, M. and Mutka, M. (1988). Condor — a
hunter of idle workstations. In Proceedings of the 8th
International Conference on Distributed Computing Sys-
tems, pp. 104-111.

Ludéscher, B., Altintas, 1., Berkley, C., Higgins, D., Jaeger-
Frank, E., Jones, M., Lee, E., Tao, J. and Zhao, Y. (2005).
Scientific workflow management and the Kepler system.
Concurrency Comput. Pract. 18: 1039-1065.

Maechling, P., Deelman, E., Zhao, L., Graves, R., Mehta, G.,
Gupta, N., Mehringer, J., Kesselman, C., Callaghan, S.,
Okaya, D., Francoeur, H., Gupta, V., Cui, Y., Vahi, K.,
Jordan, T. and Field, E. (2006). SCEC CyberShake work-
flows—automating probabilistic seismic hazard analysis
calculations. In Workflows for e-Science, edited by I.
Taylor, E. Deelman, D. Gannon and M. Shields, Springer.

Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-
Crummey, J., Liu, B. and Johnsson, L. (2005). Scheduling
strategies for mapping application workflows onto the grid.
In Proceedings of the IEEE International Symposium on
High Performance Distributed Computing (HPDC).

Microsoft Workflow Foundation. (2007). http://msdn2.micro-
soft.com/en-us/netframework/aa663328.aspx

Michener, W., Beach, J., Bowers, S., Downey, L., Jones, M.,
Ludaischer, B., Pennington, D., Rajasekar, A., Romanello,
S., Schildhauer, M., Vieglais, D. and Zhang, J. (2005). Data
Integration and Workflow Solutions for Ecology. Data
Integration in the Life Sciences (DILS), San Diego, Cali-
fornia, USA, July 20-22, 2005, pp. 321-324: Springer.

Miles, S., Papay, J., Wroe, C., Lord, P., Goble, C. and Moreau,
L. (2004). Semantic description, publication and discov-
ery of workflows in myGrid. Technical Report ECSTR-
IAMO04-001, Electronics and Computer Science, Univer-
sity of Southampton.

Moreno-Vozmediano, R., Montero, R. and Llorente, 1. (2009).
Elastic management of cluster-based services in the cloud.
In Proceedings of the 1st Workshop on Automated Con-
trol for Datacenters and Clouds (ACDCQ9), pp. 19-24.

Montage. http://montage.ipac.caltech.edu

Nimbus Science Cloud. http://workspace.globus.org/clouds/nim-
bus.html

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman,
S., Youseff, L. and Zagorodnov, D. (2008). The Eucalyptus
Open-source Cloud-computing System. In the Proceedings
of Cloud Computing and its Applications, Chicago.

Oinn, T., Li, P., Kell, D. B., Goble, C., Goderis, A., Green-
wood, M., Hull, D., Stevens, R., Turi, D. and Zhao, J.
(2006). Taverna/myGrid: aligning a workflow system with

the life sciences community. In Workflows in e-Science,
edited by . Taylor, E. Deelman, D. Gannon and M. Shields.
Springer.

Open Science Grid. www.opensciencegrid.org

Pegasus. http://pegasus.isi.edu

Piccoli, L. (2008). Lattice QCD workflows: a case study. In
SWBESO0S8: Challenging Issues in Workflow Applica-
tions, Indianapolis, IN.

Plale, B., Gannon, D., Brotzge, J., Droegemeier, K., Kurose, J.,
McLaughlin, D., Wilhelmson, R., Graves, S., Ramamurthy,
M. and Clark, R. (2006). CASA and LEAD: adaptive
cyberinfrastructure for real-time multiscale weather fore-
casting. Computer 39: 56—64.

Ramakrishnan, A., Singh, G., Zhao, H., Deelman, E., Sakellar-
iou, R., Vahi, K., Blackburn, K., Meyers, D. and Samidi,
M. (2007). Scheduling data-intensive workflows onto stor-
age-constrained distributed resources. In Proceedings of the
7th IEEE International Symposium on Cluster Computing
and the Grid — CCGrid 2007.

Sfiligoi, I. (2007). glideinWMS—a generic pilot-based workload
management system. Fermi Lab. doi:10.1088/1742-6596/
119/6/062044.

Shoshani, A., Bernardo, L. M., Nordberg, H., Rotem, D. and Sim,
A. (1998). Storage management for high energy physics
applications. In the Proceedings of Computing in High
Energy Physics 1998 (CHEP 98).

Singh, G., Kesselman, C. and Deelman, E. (2006). Application-
level resource provisioning on the grid. In the Proceedings
of e-Science, Amsterdam, The Netherlands.

Singh, G., Su, M. H., Vahi, K., Deelman, E., Berriman, B.,
Good, J., Katz, D. S. and Mehta, G. (2008). Workflow
task clustering for best effort systems with Pegasus. Pro-
ceedings of the 15th ACM Mardi Gras conference: From
lightweight mash-ups to lambda grids: Understanding the
spectrum of distributed computing requirements, applica-
tions, tools, infrastructures, interoperability, and the incre-
mental adoption of key capabilities.

Singh, G., Vahi, K., Ramakrishnan, A., Mehta, G., Deelman,
E., Zhao, H., Sakellariou, R., Blackburn, K., Brown, D.,
Fairhurst, S., Meyers, D., Berriman, G. B., Good, J. and
Katz, D. S. (2007). Optimizing workflow data footprint.
Sci. Program. 15: 249-268.

Skrutskie, M. F., Schneider, S. E., Stiening, R., Strom, S. E.,
Weinberg, M. D., Beichman, C., Chester, T., Cutri, R.,
Lonsdale, C. and Elias, J. (1997). The Two Micron All
Sky Survey (2MASS): overview and status. In The Impact
of Large Scale Near-IR Sky Surveys, (Garzon F,
Epchtein, N, Omont, A, Burton, B, Persi, P eds), Dor-
drecht: Kluwer Academic Publishers, pp. 25.

Slominski, A. (2006). Adapting BPEL to scientific workflows. In
Workflows for e-Science, edited by I. Taylor, E. Deel-
man, D. Gannon and M. Shields, Springer.

Southern California Earthquake Center (SCEC) (2006). http://
www.scec.org/

Stevens, R. D., Robinson, A. J. and Goble, C. A. (2003).
myGrid: personalised bioinformatics on the information
grid. In Bioinformatics (11th International Conference on
Intelligent Systems for Molecular Biology), vol. 19.

Taylor, 1., Deelman, E., Gannon, D. and Shields, M. eds. (2006).
Workflows in e-Science, Springer.

Taylor, 1., Shields, M., Wang, 1. and Philp, R. (2003). Distrib-
uted P2P computing within Triana: a galaxy visualization
test case. In the Proceedings of IPDPS 2003.

TeraGrid. (2004). http://www.teragrid.org/

Walker, E. (2008). Continuous adaptation for high performance
throughput computing across distributed clusters. In Pro-
ceedings of the 2008 IEEE International Conference on
Cluster Computing, pp. 369-375.

Walker, E. and Guiang, C. (2007). Challenges in executing
large parameter sweep studies across widely distributed

computing environments. In Proceedings of the 5th IEEE
workshop on challenges of large applications in distrib-
uted environment, pp. 11-18.

Wang, L., Tao, J., Kunze, M., Rattu, D. and Castellanos, A. C.
(2008). The Cumulus Project: build a scientific cloud for a
data center. In the Proceedings of Cloud Computing and
its Applications, Chicago, IL.

Wieczorek, M., Prodan, R. and Fahringer, T. (2005). Schedul-
ing of scientific workflows in the ASKALON grid envi-
ronment. ACM SIGMOD SIGMOD Rec. 34.

