
Using Simple PID Controllers to Prevent and Mitigate
Faults in Scientific Workflows

Rafael Ferreira da Silva1, Rosa Filgueira2, Ewa Deelman1

Erola Pairo-Castineira3, Ian Michael Overton4, Malcolm Atkinson5

1University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA
2British Geological Survey, Lyell Centre, Edinburgh EH14 4AP

3MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
4Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK

5School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK
{rafsilva,deelman}@isi.edu, rosa@bgs.ac.uk, Erola.Pairo-Castineira@igmm.ed.ac.uk,

{ian.overton,malcolm.atkinson}@ed.ac.uk,

ABSTRACT
Scientific workflows have become mainstream for conducting
large-scale scientific research. As a result, many workflow
applications and Workflow Management Systems (WMSs)
have been developed as part of the cyberinfrastructure to
allow scientists to execute their applications seamlessly on
a range of distributed platforms. In spite of many success
stories, a key challenge for running workflows in distributed
systems is failure prediction, detection, and recovery. In
this paper, we propose an approach to use control theory
developed as part of autonomic computing to predict fail-
ures before they happen, and mitigated them when possible.
The proposed approach applying the proportional-integral-
derivative controller (PID controller) control loop mecha-
nism, which is widely used in industrial control systems, to
mitigate faults by adjusting the inputs of the controller. The
PID controller aims at detecting the possibility of a fault far
enough in advance so that an action can be performed to
prevent it from happening. To demonstrate the feasibility of
the approach, we tackle two common execution faults of the
Big Data era—data storage overload and memory overflow.
We define, implement, and evaluate simple PID controllers
to autonomously manage data and memory usage of a bioin-
formatics workflow that consumes/produces over 4.4TB of
data, and requires over 24TB of memory to run all tasks
concurrently. Experimental results indicate that workflow
executions may significantly benefit from PID controllers,
in particular under online and unknown conditions. Simula-
tion results show that nearly-optimal executions (slowdown
of 1.01) can be attained when using our proposed method,
and faults are detected and mitigated far in advance of their
occurence.

Keywords
Scientific workflows, Fault detection and handling, Auto-
nomic computing

1. INTRODUCTION
Scientists want to extract the maximum information out

of their data—which are often obtained from scientific in-
struments and processed in large-scale distributed systems.

Scientific workflows are a mainstream solution to process
large-scale scientific computations in distributed systems,
and have supported traditional and breakthrough researches
across several domains [35]. In spite of impressive achieve-
ments today, failure prediction, detection, and recovery are
still a major challenge in workload management in distributed
system, both at the application and resource levels. Failures
affect the turnaround time of the applications, and that of
the umbrella analysis and therefore the productivity of the
scientists that depend on the power of distributed comput-
ing to do their work.

In this work, we investigate how the proportional-integral-
derivative controller (PID controller) control loop mecha-
nism, which is widely used in industrial systems, can be ap-
plied to predict and prevent failures in end-to-end workflow
executions across distributed, heterogeneous computational
environments. The basic idea behind a PID controller is to
read data from a sensor, then compute the desired actua-
tor output by calculating proportional (P), integral (I), and
derivative (D) responses and summing those three compo-
nents to compute the output. Each of the components can
often be interpreted as the present error (P), the accumu-
lation of past errors (I), and a prediction of future errors
(D), based on current rate of change. The main advantage
of using a PID controller is that the control loop mecha-
nism progressively monitors the evolution of the workflow
execution, detecting possible faults before they occur, and
when needed performs actions that lead the execution to a
steady-state.

The main contributions of this paper include:
1. The evaluation of PID controllers to prevent and mit-

igate two major problems of the Big Data era: data
storage overload and memory overflow;

2. The characterization of a bioinformatics workflow, which
consumes/produces over 4.4TB of data, and requires
over 24TB of memory;

3. An experimental evaluation via simulation to demon-
strate the feasibility of the proposed approach using
simple PID controllers; and

4. A performance optimization study to tune the parame-
ters of the control loop to provide nearly-optimal work-
flow executions, where faults are detected and handled

Copyright held by the author(s).



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

far in advance of their occurence.

2. RELATED WORK
Several offline strategies and techniques were developed

to detect and handle failures during scientific workflow exe-
cutions [3, 5, 24, 27, 28, 36]. Autonomic online methods were
also proposed to cope with workflow failures at runtime,
for example by providing checkpointing [20, 25, 30], prove-
nance [13, 25], task resubmission [10, 31], and task replica-
tion [5, 8], among others. However, these systems do not
aim to prevent faults, but mitigate them, and although task
replication may increase the probability of having a suc-
cessful execution in another computing resource, it should
be used sparingly to avoid overloading the execution plat-
form [7]. These system also make strong assumptions about
resource and application characteristics. Although several
works address task requirement estimations based on prove-
nance data [11,18,22,29], accurate estimations are still chal-
lenging, and may be specific to a certain type of application.
In [4], a prediction algorithm based on machine learning
(Näıve Bayes classifier) is proposed to identify faults before
they occur, and to apply preventive actions to mitigate the
faults. Experimental results show that faults can be pre-
dicted up to 94% of accuracy, however the approach is tied
to a small set of applications, and it is assumed that the ap-
plication requirements do not change over time. In previous
works, we proposed an autonomic method described as a
MAPE-K loop to cope with online non-clairvoyant workflow
executions faults on grids [15, 17], where unpredictability is
addressed by using a-priori knowledge extracted from exe-
cution traces to identify severity levels of faults, and apply
a specific set of actions. Although this is the first work on
self-healing of workflow executions in online and unknown
conditions, experimental results on a real platform show an
important improvement of the QoS delivered by the system.
However, the method does not prevent faults from happen-
ing (actions are performed once faults are detected). In [19],
a machine learning approach based in inductive logic pro-
gramming is proposed for fault prediction and diagnosis in
grids. This approach is limited to small scale applications
and a few parameters—the number of rules may exponen-
tially increase as the number of tasks in a workflow or the
accounted parameters increase.

To the best of our knowledge, this is the first work that
uses PID controllers to mitigate faults in scientific workflow
executions under online and unknown conditions.

3. PID CONTROLLERS
The keystone component of the proposed process is the

proportional-integral-derivative controller (PID controller) [34]
control loop mechanism, which is widely used in industrial
control systems, to mitigate faults by adjusting the process
control inputs. Examples of such systems are the ones where
the temperature, pressure, or the flow rate, need to be con-
trolled. In such scenarios, the PID controller aims at detect-
ing the possibility of a fault far enough in advance so that
an action can be performed to prevent it from happening.
Figure 1 shows the general PID control system loop. The
setpoint is the desired or command value for the process
variable. The control system algorithm uses the difference
between the output (process variable) and the setpoint to
determine the desired actuator input to drive the system.

Figure 1: General PID control system loop.

Figure 2: Response of a typical PID closed loop sys-
tem.

The control system performance is measured through a
step function as a setpoint command variable, and the re-
sponse of the process variable. The response is quantified
by measuring defined waveform characteristics as shown in
Figure 2. Raise time is the amount of time the system takes
to go from about 10% to 90% of the steady-state, or final,
value. Percent overshoot is the amount that the process
variable surpasses the final value, expressed as a percent-
age of the final value. Settling time is the time required for
the process variable to settle to within a certain percent-
age (commonly 5%) of the final value. Steady-state error is
the final difference between the process variable and the set-
point. Dead time is a delay between when a process variable
changes, and when that change can be observed.

Process variables (output) are determined by fault-specific
metrics quantified online. The setpoint is constant and de-
fined as 1. The output of the PID controller is an input
value for a Curative Agent, which determines whether an
action should be performed (Figure 3). Negative input val-
ues mean the control system is raising too fast and may tend
to the overshoot state (i.e., a faulty state), therefore preven-
tive or corrective actions should be performed. Actions may
include task pre-emption, task resubmission, task clustering,
task cleanup, storage management, etc. In contrast, positive
input values mean that the control system is smoothly ris-
ing to the steady state. The control signal u(t) (output) is
defined as follows:

u(t) = Kpe(t) + Ki

∫ t

0

e(t)dt + Kd
de(t)

dt
, (1)

where Kp is the proportional gain constant, Ki is the integral
gain constant, Kd is the derivative gain constant, and e is
the error defined as the difference between the setpoint and
the process variable value.

Figure 3: General PID control system loop.



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

Tuning the proportional (Kp), integral (Ki), and deriva-
tive (Kd) gain constants is challenging and a research topic
by itself. Therefore, in this paper we initially assume Kp =
Ki = Kd = 1 for the sake of simplicity and to demonstrate
the feasibility of the process, and then we use the Ziegler-
Nichols closed loop method [37] for tuning the PID con-
trollers (see Section 6).

4. DEFINING PID CONTROLLERS
In our proposed approach, a PID controller is defined and

used for each possible-future fault identified from workload
traces (historical data). In some cases, a particular type of
faults cannot be modeled as a full PID controller. For exam-
ple, there are faults that cannot be predicted far in advance
(e.g., unavailability of resources due to a power cut). In this
case, a PI (proportional-integral) controller can be defined
and deployed. In production systems, a large number of
controllers may be defined and used to control, for example,
CPU utilization, network bandwidth, etc. In this paper, we
demonstrate the feasibility of the use of PID controllers by
tackling two common issues of workflow executions: data
and memory overflow.

4.1 Workflow Data Footprint and Management
In the era of Big Data Science, applications are producing

and consuming ever-growing data sets. A run of scientific
workflows that manipulate these data sets may lead the sys-
tem to an out of disk space fault if no mechanisms are in
place to control how the available storage is used. To prevent
this, data cleanup tasks are often automatically inserted into
the workflow by the workflow management system [33], or
the number of concurrent task executions is limited to pre-
vent data usage overflow. Cleanup tasks remove data sets
that are no longer needed by downstream tasks, but nev-
ertheless they add an important overhead to the workflow
execution [9].

PID Controller. The controller process variable (output)
is defined as the ratio of the estimated disk space required
by current tasks in execution, and the actual available disk
space. The system is in a non-steady state if the total
amount of disk space consumed is above (overshoot) a pre-
define threshold (setpoint), or the amount of used disk space
is below the setpoint. The proportional (P) response is com-
puted as the error between the setpoint, and the actual used
disk space; the integral (I) response is computed from the
sum of the disk usage errors (cumulative value of the pro-
portional responses); and the derivative (D) response is com-
puted as the difference between the current and the previous
disk overflow (or underutilization) error values.

Corrective Actions. The output of the PID controller
(control signal u(t), Equation 1) indicates whether the sys-
tem is in a non-steady state. Negative values indicate that
the current disk usage is above the threshold of the minimum
required available disk space (a safety measure to avoid an
unrecoverable state). In contrast, positive values indicate
that the current running tasks do not maximize disk usage.
For values of u(t) < 0, (1) data cleanup tasks can be trig-
gered to remove unused intermediate data (adding cleanup
tasks may imply rearranging the priority of all tasks in the
queue), or (2) tasks can be preempted due to the inability
to remove data—the inability of cleaning up data may lead
the execution to an unrecoverable state, and thereby to a

failed execution. Otherwise (for u(t) > 0), the number of
concurrent task executions may be increased.

4.2 Workflow Memory Usage and Management
Large scientific computing applications rely on complex

workflows to analyze large volume of data. These tasks are
often running in HPC resources over thousands of CPU cores
and simultaneously performing data accesses, data move-
ments, and computation, dominated by memory-intensive
operations (e.g., reading a large volume of data from disk,
decompressing in memory massive amount of data or per-
forming a complex calculation which generates large datasets,
etc.). The performance of those memory-intensive opera-
tions are quite often limited by the memory capacity of the
resource where the application is being executed. Therefore,
if those operations overflow the physical memory limit it can
result in application performance degradation or application
failure. Typically, the end-user is responsible for optimizing
the application, modifying the code if it is needed for com-
plying with the amount of memory that can be used on
that resource. This work addresses the memory challenge
proposing an in-situ analysis of memory usage, to adapt
the number of concurrent tasks executions according to the
memory usage required by an application at runtime.

PID Controller. The controller process variable (output)
is defined as the ratio of the estimated total peak memory
usage required by current tasks in execution, and the actual
available memory. The system is in a non-steady state if
the amount of memory available is below the setpoint, or if
the current available memory is above it. The proportional
(P) response is computed as the error between the mem-
ory consumption setpoint value, and the actual memory us-
age; the integral (I) response is computed from cumulative
proportional responses (previous memory usage errors); and
the derivative (D) response is computed as the difference
between the current and the previous memory overflow (or
underutilization) error values.

Corrective Actions. Negative values for the control signal
u(t) indicate that the ensemble of running tasks are leading
the system to an overflow state, thus some tasks should be
preempted to prevent the system to run out of memory. For
positive u(t) values, the memory consumption of current
running tasks is below a predefined memory consumption
setpoint. Therefore, the workflow management system may
spawn additional tasks for concurrent execution.

5. EXPERIMENTAL EVALUATION

5.1 Scientific Workflow Application
The 1000 genomes project provides a reference for human

variation, having reconstructed the genomes of 2,504 indi-
viduals across 26 different populations [12]. The test case
used in this work identifies mutational overlaps using data
from the 1000 genomes project in order to provide a null
distribution for rigorous statistical evaluation of potential
disease-related mutations. This test case (Figure 4) has been
implemented as a Pegasus [2,14] workflow, and is composed
of five different tasks:

Individuals. This task fetches and parses the Phase 3
data [12] from the 1000 genomes project per chromosome.
These files list all of Single nucleotide polymorphisms (SNPs)
variants in that chromosome and which individuals have



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

...c1 c2 c22 ...s1 s2 s22...p1 p2 pn

... fc 2505fc 1 fs 3fp 1 fp 2 fp n...

...m1 m2 m154 ...fr1 fr2 fr154

i 3 pop 2 sh 3

om 1

Data 
Preparation

Populations Sifting

Individuals
1000 Genome Populations Sifting

Pair
Overlap

Mutations

Individuals

Analysis

ofm 1

Input Data

Output Data fom 2 fog 2

Frequency
Overlap

Mutations

Figure 4: Overview of the 1000 genome sequencing
analysis workflow.

each one. An individual task creates output files for each
individual of rs numbers, where individuals have mutations
on both alleles.

Populations. The 1000 genome project has 26 different
populations from many different locations worldwide [1].
The populations task fetches and parses five super pop-
ulations (African, Mixed American, East Asian, European,
and South Asian), and a set of all inviduals.

Sifting. This task computes the SIFT scores of all of the
SNPs variants, as computed by the Variant Effect Predictor
(VEP). SIFT is a sequence homology-based tool that Sorts
Intolerant From Tolerant amino acid substitutions, and pre-
dicts whether an amino acid substitution in a protein will
have a phenotypic effect. VEP determines the effect of indi-
vidual variants on genes, transcripts, and protein sequence,
as well as regulatory regions. For each chromosome, the
sifting task processes the corresponding VEP, and selects
only the SNPs variants that have a SIFT score.

Pair Overlap Mutations. This task measures the overlap
in mutations (SNPs) among pairs of individuals. Consid-
ering two individuals, if both individuals have a given SNP
then they have a mutation overlap. It performs several corre-
lations including different number of pair of individuals, and
different number of SNPs variants (only the SNPs variants
with a score less than 0.05, and all the SNPs variants); and
computes an array (per chromosome, population, and SIFT
level selected), which has as many entries as individuals—
each entry contains the list of SNPs variants per individual
according to the SIFT score.

Frequency Overlap Mutations. This task calculates the
frequency of overlapping mutations across n subsamples of j
individuals. For each run, the task randomly selects a group
of 26 individuals from this array and computes the number
of overlapping in mutations among the group. Then, the
individuals task computes the frequency of mutations that
have the same number of overlapping mutations.

5.2 Workflow Characterization
We profiled the 1000 genome sequencing analysis work-

flow using the Kickstart [23] profiling tool. Kickstart moni-
tors and records task execution in scientific workflows (e.g.,
process I/O, runtime, memory usage, and CPU utilization).
Runs were conducted on the Eddie Mark 3, which is the third
iteration of the University of Edinburgh’s compute cluster.
The cluster is composed of 4,000+ cores with up to 2 TB
of memory. For running the characterization experiments,
we have used three types of nodes, depending of the size of
memory required for each task:

1. 1 Large node with 2 TB RAM, 32 cores, Intel R© Xeon R©
Processor E5-2630 v3 (2.4 GHz), for running the in-

dividual tasks;
2. 1 Intermediate node with 192GB RAM, 16 cores, Intel R©

Xeon R© Processor E5-2630 v3 (2.4 GHz), for running
the sifting tasks;

3. 2 Standards nodes with 64 GB RAM, 32 cores, Intel R©
Xeon R© Processor E5-2630 v3 (2.4 GHz), for running
the remaining tasks.

Table 1 shows the execution profile of the workflow. Most
of the workflow execution time is allocated to the individ-

ual tasks. These tasks are in the critical path of the work-
flow due to their high demand of disk (174GB in average per
task) and memory (411GB in average per task). The total
workflow data footprint is about 4.4TB. Although the large
node provides 2 TB of RAM and 32 cores, we would only be
able to run up to 4 concurrent tasks per node. In Eddie Mark
3, the standard disk quota is 2GB per user, and 200GB per
group. Since this quota would not suffice to run all tasks
of the 1000 genome sequencing analysis workflow (even if
all tasks run sequentially), we had a special arrangement
to increase our quota to 500GB. Note that this increased
quota allow us to barely run 3 concurrent individual tasks
in the large node, and some of the remaining tasks in smaller
nodes. Therefore, data and memory management are crucial
to perform a successful run of the workflow, while increasing
user satisfaction.

5.3 Experiment Conditions
The experiments use trace-based simulation. Since most

workflow simulators are event-based [6,16], we developed an
activity-based simulator to simulate every time slice of the
PID controllers behaviors (which is available online [32]).
The simulator provides support for task scheduling and re-
source provisioning at the workflow level. The simulated
computing environment represents the three nodes from the
Eddie Mark 3 cluster described in Section 5.2 (total 80 CPU
cores). Additionally, we assume a shared network file system
among the nodes with total capacity of 500GB.

We use an FCFS policy with task preemption and back-
fill for task scheduling—tasks submitted at the same time
are randomly chosen, and preempted tasks return to the top
of the queue. To avoid unrecoverable faults due to run out
of disk space, we implemented a data cleanup mechanism
to remove data that are no longer required by downstream
tasks [33]. Data cleanup tasks are only triggered if the max-
imum storage capacity is reached. In this case, all running
tasks are preempted, the data cleanup task is executed, and
the workflow resumes its execution. Note that this mecha-
nism may add a significant overhead to the workflow execu-
tion.

The goal of this experiment is to ensure that correctly de-
fined executions complete, that performance is acceptable,
and that possible-future faults are quickly detected and au-



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

Task Count
Runtime Data Footprint Memory Peak

Mean (s) Std. Dev. Mean (GB) Std. Dev. Mean (GB) Std. Dev.

Individual 22 31593.7 17642.3 173.79 82.34 411.08 17.91
Population 7 1.14 0.01 0.02 0.01 0.01 0.01
Sifting 22 519.9 612.4 0.94 0.43 7.95 2.47
Pair Overlap Mutations 154 160.3 318.7 1.85 0.85 17.81 20.47
Frequency Overlap Mutations 154 98.8 47.1 1.83 0.86 8.18 1.42

Total (cumulative) 359 590993.8 – 4410.21 – 24921.58 –

Table 1: Execution profile of the 1000 genome sequencing analysis workflow.

tomatically handled before they lead the workflow execution
to an unrecoverable state (measured by the number of data
cleanup tasks used). Therefore, we do not attempt to op-
timize task preemption (which criteria should be used to
select tasks for removal, or perform checkpointing) since our
goal is to demonstrate the feasibility of the approach with
simple use case scenarios.

Composing PID Controllers. The response variable of
the control loop that leads the system to a setpoint (or
within a steady-state error) is defined as waveforms, which
can be composed of overshoots or underutilization of the sys-
tem. In order to accommodate overshoots, we arbitrarily de-
fine our setpoint as 80% of the maximum total capacity (for
both storage and memory usage), and a steady-state error
of 5%. For this experiment we assume Kp = Ki = Kd = 1
to demonstrate the feasibility of the approach regardless the
use of tuning methods. A single PID controller ud is used
to manage disk usage (shared network file system), while
an independent memory controller un

m is deployed for each
computing node n. The controller input value indicates the
amount of disk space or memory that should be consumed by
tasks. If the input value is positive, more tasks are scheduled
(resp. tasks are preempted). When managing a set of con-
trollers, it is important to ensure that an action performed
by a controller does not counteract an action performed by
another one. In this paper, the decision on the number of
tasks to be scheduled/preempted is computed as the min
between the response value of the unique disk usage PID
controller, and the memory PID controller per resource, i.e.,
min(ud, u

n
m). The control loop process uses then the mean

values presented in Table 1 to estimate the number of tasks
to be scheduled/preempted. Note that due to the high val-
ues of standard deviation, estimations may not be accurate.
Task characteristics estimation is beyond the scope of this
work, and sophisticated methods to provide accurate esti-
mates can be found in [11, 18, 22, 29]. However, this work
intends to demonstrate that even using inaccurate estima-
tion methods, PID controllers yield good results.

Reference Workflow Execution. In order to measure the
efficiency of our online method under online and unknown
conditions, we compare the workflow execution performance
(in terms of the turnaround time to execute all tasks) to a
reference workflow—computed offline under known condi-
tions, i.e., all requirements (e.g., runtime, disk, memory)
are accurate and known in advance. We performed several
runs for the reference workflow, which yielded an averaged
makespan of 382,887.7s (∼106h, standard deviation ≤ 5%).

5.4 Experimental Results and Discussion
We have conducted workflow runs with three different

types of controllers: (P) only the proportional component

Configuration Avg. Makespan (h) Slowdown

Reference 106.36 –
P 138.76 1.30
PI 126.69 1.19
PID 114.96 1.08

Table 2: Average workflow makespan for different
configurations of the controllers: (P) proportional,
(PI) proportional-integral, and (PID) proportional-
integral-derivative. Reference denotes the makespan
of a reference workflow execution computed offline
and under known conditions.

is evaluated: Kp = 1, and Ki = Kd = 0; (PI) the propor-
tional and integral components are enabled: Kp = Ki =
1, and Kd = 0; and (PID) all components are activated:
Kp = Ki = Kd = 1. The reference workflow execution is
reported as Reference. We have performed several runs of
each configuration to produce results with statistical signif-
icance (errors below 5%).

Overall makespan evaluation. Table 2 shows the aver-
age makespan (in hours) for the three configurations of the
controller and the reference workflow execution. The degra-
dation of the makespan is expected due to the online and
unknown conditions (no information about the tasks is avail-
able in advance). In spite of the fact that the mean does not
provide accurate estimates, the use of a control loop mecha-
nism diminishes this effect. The use of controllers may also
degrade the makespan due to task preemption. However,
if tasks were scheduled only using the estimates from the
mean, the workflow would not complete its execution due to
lack of disk space or memory overflows.

Executions using PID controllers outperform executions
using only the proportional (P) or the PI controller. The
PID controller slows down the application by 1.08, while the
application slowdown is 1.19 and 1.30 for the PI and P con-
trollers, respectively. This result suggests that the deriva-
tive component (prediction of future errors) has significant
impact on the workflow executions, and that the accumu-
lation of past errors (integral component) is also important
to prevent and mitigate faults. Therefore, below we analyze
how each of these components influence the number of tasks
scheduled, and the peaks and troughs of the controller re-
sponse function. We did not perform runs where mixed PID,
PI, and P controllers were part of the same simulation, since
it would be very difficult to determine the influence of each
controller.

Data footprint. Figure 5 shows the time series of the
number of tasks scheduled or preempted during workflow
executions. For each controller configuration, we present a
single execution, where the makespan is the closest to the
average makespan value shown in Table 2. Task preemptions



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

(a) Proportional Controller (P)

(b) Proportional-integral Controller (PI)

(c) Proportional-integral-derivative Controller (PID)

Figure 5: Data Footprint: Number of tasks scheduled (blue bars for positive values) and preempted (red bars
for negative values) during the lifespan of a workflow execution (left y-axis). The right y-axis represents the
step response of the controller input value (black line) during the workflow execution.

are represented as negative values (red bars), while positive
values (blue bars) indicate the number of tasks scheduled
at an instant of time. Additionally, the right y-axis shows
the step response of the controller input value (black line)
for disk usage during the workflow execution. Recall that
positive input values (u(t) > 0, Equation 1) trigger task
scheduling, while negative input values (u(t) < 0) trigger
task preemption.

The proportional controller (P, Figure 5a) is limited to
the current error, i.e., the amount of disk space that is
over/underutilized. Since the controller input value is strictly
proportional to the error, there is a burst on the number
of tasks to be scheduled at the beginning of the execution.
This bursty pattern and the nearly constant variation of
the input value lead the system to an inconsistent state,
where the remaining tasks to be scheduled cannot lead the
controller within the steady-state. Consequently, tasks are
constantly scheduled and then preempted. In the example
scenario shown in Figure 5a, this process occurs at about 4h,
and performs more than 6,000 preemptions. Table 3 shows
the average number of preemptions and cleanup tasks oc-
currences per workflow execution. On average, proportional
controllers produced more than 7,000 preemptions, but no
cleanup tasks. The lack of cleanup tasks indicate that the
number of concurrent executions is very low (mostly influ-

Controller # Tasks Preempted # Cleanup Tasks

P 7225 0
PI 168 48
PID 73 4

Table 3: Average actual number of tasks preempted
and cleanup tasks executed per workflow run for the
P, PI, and PID controllers.

enced by the number of task preemptions), which is observed
from the high average application slowdown of 1.30.

The proportional-integral controller (PI, Figure 5b) aggre-
gates the cumulative error when computing the response of
the controller. As a result, the bursty pattern is smoothed
along the execution, and task concurrency is increased. The
cumulative error tends to increase the response of the PI

controller at each iteration (both positively or negatively).
Thus, task preemption occurs earlier during execution. On
the other hand, this behavior mitigates the vicious cycle
present in the P controllers, and consequently the average
number of preempted tasks is substantially reduced to 168
(Table 3). A drawback of using a PI controller, is the pres-
ence of cleanup tasks, which is due to the higher level of
concurrency among task executions.

The proportional-integral-derivative controller (PID, Fig-



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

ure 5c) gives importance to the previous response produced
by the controller (the last computed error). The deriva-
tive component drives the controller to trigger actions once
the current error follows (or increases) the previous error
trend. In this case, the control loop only performs actions
when disk usage is moving towards an overflow or under-
utilization state. Note that the number of actions (schedul-
ing/preemption) triggered in Figure 5c is much less than the
number triggered by the PI controller: the average number
of preempted tasks is 73, and only 4 cleanup tasks on average
are spawned (Table 3).

Memory Usage. Figure 6 shows the time series of the
number of tasks scheduled or preempted during the work-
flow executions for the memory controllers. The right y-axis
shows the step response of the controller input value (black
line) for memory usage during the workflow execution. We
present the response function of a controller attached to a
standard cluster (32 cores, 64GB RAM, Section 5.2), which
runs the population, pair_overlap_mutations, and fre-

quency_overlap_mutations tasks. The total memory allo-
cations required to run all these tasks is over 4TB, which
might lead the system to memory overflow states.

When using the proportional controller (P, Figure 6a),
most of the actions are triggered by the data footprint con-
troller (Figure 5a). As aforementioned, memory does not
become an issue when only the proportional error is taken
into account, since task execution is nearly sequential (low
level of concurrency). As a result, only a few tasks (on av-
erage less than 5) are preempted due to memory overflow.
Note that the process of constant task scheduling (∼50h of
execution) is strongly influenced by the memory controller.
Also, the step response shown in Figure 6a highlights that
most of the task preemptions occur in the standard cluster.
This result suggests that actions performed by the global
data footprint controller is affected by actions triggered by
the local memory controller. The analysis of the influence of
multiple concurrent controllers is out of the scope of this pa-
per, however this result demonstrates that controllers should
be used sparingly, and actions triggered by controllers should
be performed by priority or the controller hierarchical level.

The PI controller (Figure 6b) mitigates this effect, since
the cumulative error prevents the controller from trigger-
ing repeated actions. Observing the step response of the
PI memory controller and the PI data footprint controller
(Figure 5b), we notice that most of the task preemptions
are triggered by the memory controller, particularly in the
first quarter of the execution. The average data footprint per
task of the population, pair_overlap_mutations, and fre-

quency_overlap_mutations tasks is 0.02GB, 1.85GB, and
1.83GB (Table 3), respectively. Thus, the data footprint
controller tends to increase the number of concurrent tasks.
In the absence of memory controllers, the workflow execu-
tion would tend to memory overflow, and thus lead to a
failed state.

The derivative component of the PID controller (Figure 6c)
acts as a catalyst to improve memory usage: it decreases the
overshoot and the settling time without affecting the steady-
state error. As a result, the number of actions triggered
by the PID memory controller is significantly reduced when
compared to the PI or P controllers.

Although the experiments conducted in this feasibility
study considered equal weights for each of the components in
a PID controller (i.e., Kp = Ki = Kd = 1), we have demon-

Control Type Kp Ki Kd

P 0.50 · Ku – –
PI 0.45 · Ku 1.2 · Kp/Tu –
PID 0.60 · Ku 2 · Kp/Tu Kp · Tu/8

Table 4: Ziegler-Nichols tuning, using the oscillation
method. These gain values are applied to the par-
allel form of the PID controller, which is the object
of study in this paper. When applied to a standard
PID form, the integral and derivative parameters
are only dependent on the oscillation period Tu.

strated that correctly defined executions complete with ac-
ceptable performance, and that faults were detected far in
advance of their occurance, and automatically handled be-
fore they lead the workflow execution to an unrecoverable
state. In the next section, we explore the use of a simple and
commonly used tuning method to calibrate the three PID
gain parameters.

6. TUNING PID CONTROLLERS
The goal of tuning a PID loop is to make it stable, re-

sponsive, and to minimize overshooting. However, there is
no optimal way to achieve responsiveness without compro-
mising overshooting, or vice-versa. Therefore, a plethora of
methods have been developed for tuning PID control loops.
In this paper, we use the Ziegler-Nichols method to tune
the gain parameters of the data footprint and memory con-
trollers. This is one of the most common heuristics that
attempts to produce tuned values for the three PID gain
parameters (Kp, Ki, and Kd) given two measured feedback
loop parameters derived from the following measurements:
(1) the period Tu of the oscillation frequency at the stability
limit, and (2) the gain margin Ku for loop stability. In this
method, the Ki and Kd gains are first set to zero. Then, the
proportional gain Kp is increased until it reaches the ulti-
mate gain Ku, at which the output of the loop starts to os-
cillate. Ku and the oscillation period Tu are then used to set
the gains according to the values described in Table 4 [26].
A detailed explanation of the method can be found in [37].
In this section, we will present how we determine the period
Tu, and the gain margin Ku for loop stability.

6.1 Determining Tu and Ku

The Ziegler-Nichols oscillation method is based on experi-
ments executed on an established closed loop. The overview
of the tuning procedure is as follows [21]:

1. Turn the PID controller into a P controller by setting
Ki = Kd = 0. Initially, Kp is also set to zero;

2. Increase Kp until there are sustained oscillations in the
signal in the control system. This Kp value is denoted
the ultimate (or critical) gain, Ku;

3. Measure the ultimate (or critical) period Tu of the sus-
tained oscillations; and

4. Calculate the controller parameter values according to
Table 4, and use these parameter values in the con-
troller.

Since workflow executions are intrinsically dynamic (due to
the arrival of new tasks at runtime), it is difficult to establish
a sustained oscillation in the signal. Therefore, in this paper
we measured sustained oscillation in the signal within the
execution of long running tasks—in this case the individual



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

(a) Proportional Controller (P)

(b) Proportional-integral Controller (PI)

(c) Proportional-integral-derivative Controller (PID)

Figure 6: Memory Usage: Number of tasks scheduled (blue bars for positive values) and preempted (red bars
for negative values) during the lifespan of a workflow execution (left y-axis). The right y-axis represents the
step response of the controller input value (black line) during the workflow execution. This figure shows the
step response function of a controller attached to a standard cluster (32 cores, 64GB RAM), which has more
potential to arise memory overflows.

Controller Ku Tu Kp Ki Kd

Data Footprint 0.58 3.18 0.35 0.22 0.14
Memory Usage 0.53 12.8 0.32 0.05 0.51

Table 5: Tuned gain parameters (Kp, Ki, and Kd) for
both the data footprint and memory usage PID con-
trollers. Ku and Tu are computed using the Ziegler-
Nichols method, and represent the ultimate period
and critical gain, respectively.

tasks (Table 1). We conducted several runs (O(100)) with
the proportional (P) controller to compute the period Tu and
the gain margin Ku. Table 5 shows the values for Ku and
Tu for each controller used in the paper, as well as the tuned
gain values for Kp, Ki, and Kd for the PID controller.

6.2 Experimental Evaluation and Discussion
We have conducted runs with the tuned PID controllers

for both the data footprint and memory usage. Figure 7
shows the time series of the number of tasks scheduled or
preempted during the workflow executions, and the step re-
sponse of the controller input value (right y-axis). The aver-
age workflow execution makespan is 386,561s, which yields a

slowdown of 1.01. The average number of preempted tasks
is around 18, and only a single cleanup task was used in
each workflow execution. The controller step responses, for
both the data footprint (Figure 7a) and the memory usage
(Figure 7b), show lower peaks and troughs values during the
workflow execution when compared to the PID controllers us-
ing equal weights for the gain parameters (Figures 5c and 6c,
respectively). More specifically, the controller input value
is reduced by 30% for the memory controller attached to
a standard cluster. This behavior is attained through the
ponderations provided by the tuned parameters. However,
tuning the gain parameters cannot ensure that an optimal
scheduling will be produced for workflow runs (mostly due
to the dynamism inherent to workflow executions) as few
preemptions are still triggered.

Although the Ziegler-Nichols method provides quasi-optimal
workflow executions (for the workflow studied in this paper),
the key factor of its success is due to the specialization of
the controllers to a single application. In production sys-
tems, such methodology may not be realistic because of the
variety of applications running by different users—deploying
a PID controller per application and per component (e.g.,
disk, memory, network, etc.) may significantly increase the
complexity of the system and the system’s requirements. On



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

(a) PID Data Footprint Controller

(b) PID Memory Controller

Figure 7: Tuning PID Controllers: Number of tasks scheduled (blue bars for positive values) and preempted
(red bars for negative values) during the lifespan of a workflow execution (left y-axis). The right y-axis
represents the step response of the controller input value (black line) during the workflow execution. The
bottom of the figure shows the step response function of a memory controller attached to a standard cluster
(32 cores, 64GB RAM), which has more potential to arise memory overflows. The average workflow makespan
is 386,561s, i.e. an average application slowdown of 1.01.

the other hand, controllers may be deployed in the user’s
space (or per workflow engine) to manage a small number of
workflow executions. In addition, the time required to pro-
cess the current state of the system and decide whether to
trigger an action is nearly instantaneous, what favors the use
of PID controllers on online and real-time workflow systems.
More sophisticated methods (e.g., using machine learning)
may provide better approaches to tune the gain parameters.
However, they may also add an important overhead.

7. CONCLUSION
In this paper, we have described, evaluated, and discussed

the feasibility of using simple PID controllers to prevent
and mitigate faults online and under unknown conditions in
workflow executions. We have addressed two common faults
of today’s science applications, data storage overload and
memory overflow (main issues in data-intensive workflows),
as use cases to demonstrate the feasibility of the proposed
approach.

Experimental results using simple defined control loops
(no tuning) show that faults are detected and prevented be-
fore their occur, leading workflow execution to its comple-
tion with acceptable performance (slowdown of 1.08). The
experiments also demonstrated the importance of each com-
ponent in a PID controller. We then used the Ziegler-Nichols
method to tune the gain parameters of the controllers (both
data footprint and memory usage). Experimental results
show that the control loop system produced nearly optimal
scheduling—slowdown of 1.01. Therefore, we claim that the
preliminary results of this work open a new avenue of re-
search in workflow management systems.

We acknowledge that PID controllers should be used spar-
ingly, and metrics (and actions) should be defined in a way

that they do not lead the system to an inconsistent state—as
observed in this paper when only the proportional compo-
nent was used. Therefore, we plan to investigate the si-
multaneous use of multiple control loops at the application
and infrastructure levels, to determine to which extent this
approach may negatively impact the system. We also plan
to extend our synthetic workflow generator [16] (that can
produce realistic synthetic workflows based on profiles ex-
tracted from execution traces) to generate estimates of data
and memory usages based on the gathered measurements.

Acknowledgments. This work was funded by DOE con-
tract number #DESC0012636,“Panorama—Predictive Mod-
eling and Diagnostic Monitoring of Extreme Science Work-
flows”. This work was carried out when Rosa Filgueira
worked for the University of Edinburgh, and was funded by
the Postdoctoral and Early Career Researcher Exchanges
(PECE) fellowship funded by the Scottish Informatics and
Computer Science Allience (SICSA) in 2016, and the Well-
come Trust-University of Edinburgh Institutional Strategic
Support Fund.

8. REFERENCES
[1] Populations - 1000 genome.

http://1000genomes.org/category/population.

[2] 1000genome workflow.
https://github.com/pegasus-isi/1000genome-workflow.

[3] H. Arabnejad et al. Fairness resource sharing for
dynamic workflow scheduling on heterogeneous
systems. In 2012 IEEE 10th International Symposium
on Parallel and Distributed Processing with
Applications (ISPA), pages 633–639. IEEE, 2012.

[4] A. Bala et al. Intelligent failure prediction models for
scientific workflows. Expert Systems with Applications,



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

42(3):980–989, 2012.

[5] O. A. Ben-Yehuda et al. Expert: Pareto-efficient task
replication on grids and a cloud. In 2012 IEEE 26th
International Parallel & Distributed Processing
Symposium (IPDPS), pages 167–178. IEEE, 2007.

[6] R. N. Calheiros et al. Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and
evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1):23–50, 2011.

[7] H. Casanova. On the harmfulness of redundant batch
requests. In 15th IEEE International Conference on
High Performance Distributed Computing, pages
255–266. IEEE, 2006.

[8] I. Casas et al. A balanced scheduler with data reuse
and replication for scientific workflows in cloud
computing systems. Future Generation Computer
Systems, 2016.

[9] W. Chen et al. Workflow overhead analysis and
optimizations. In Proceedings of the 6th workshop on
Workflows in support of large-scale science, pages
11–20. ACM, 2011.

[10] W. Chen et al. Dynamic and fault-tolerant clustering
for scientific workflows. IEEE Transactions on Cloud
Computing, 4(1):49–62, 2016.

[11] A. M. Chirkin et al. Execution time estimation for
workflow scheduling. In 9th Workshop on Workflows
in Support of Large-Scale Science (WORKS), pages
1–10, 2014.

[12] . G. P. Consortium et al. A global reference for human
genetic variation. Nature, 526(7571):68–74, 2012.

[13] F. Costa et al. Handling failures in parallel scientific
workflows using clouds. In High Performance
Computing, Networking, Storage and Analysis (SCC),
pages 129–139, 2012.

[14] E. Deelman et al. Pegasus, a workflow management
system for science automation. Future Generation
Computer Systems, 46(0):17–35, 2015.

[15] R. Ferreira da Silva et al. Self-healing of workflow
activity incidents on distributed computing
infrastructures. Future Generation Computer Systems,
29(8):2284–2294, 2013.

[16] R. Ferreira da Silva et al. Community resources for
enabling and evaluating research on scientific
workflows. In 10th IEEE International Conference on
e-Science, eScience’14, pages 177–184, 2014.

[17] R. Ferreira da Silva et al. Controlling fairness and task
granularity in distributed, online, non-clairvoyant
workflow executions. Concurrency and Computation:
Practice and Experience, 26(14):2347–2366, 2014.

[18] R. Ferreira da Silva et al. Online task resource
consumption prediction for scientific workflows.
Parallel Processing Letters, 25(3), 2015.

[19] M. Ferro et al. A proposal to apply inductive logic
programming to self-healing problem in grid
computing: How will it work? Concurrency and
Computation: Practice and Experience,
23(17):2118–2135, 2011.

[20] A. Hary et al. Design and evaluation of a self-healing
kepler for scientific workflows. In 19th ACM
International Symposium on High Performance
Distributed Computing (HPDC), pages 340–343, 2010.

[21] F. Haugen. Ziegler-nichols’ closed-loop method.
Technical report, TechTeach, 2010.

[22] H. Hiden et al. A framework for dynamically
generating predictive models of workflow execution. In
8th Workshop on Workflows in Support of Large-Scale
Science (WORKS), pages 77–87, 2013.

[23] G. Juve et al. Practical resource monitoring for robust
high throughput computing. In 2nd Workshop on
Monitoring and Analysis for High Performance
Computing Systems Plus Applications,
HPCMASPA’15, pages 650–657, 2015.

[24] G. Kandaswamy et al. Fault tolerance and recovery of
scientific workflows on computational grids. In 2008.
CCGRID’08. 8th IEEE International Symposium on
Cluster Computing and the Grid, pages 777–782.
IEEE, 2013.

[25] S. Köhler et al. Improving workflow fault tolerance
through provenance-based recovery. In International
Conference on Scientific and Statistical Database
Management, pages 207–224, 2011.

[26] A. S. McCormack et al. Rule-based autotuning based
on frequency domain identification. Control Systems
Technology, IEEE Transactions on, 6(1):43–61, 1942.

[27] J. Montagnat et al. Workflow-based comparison of two
distributed computing infrastructures. In 2010 5th
Workshop on Workflows in Support of Large-Scale
Science (WORKS), pages 1–10. IEEE, 2009.

[28] N. Muthuvelu et al. Task granularity policies for
deploying bag-of-task applications on global grids.
Future Generation Computer Systems, 29(1):170–181.

[29] I. Pietri et al. A performance model to estimate
execution time of scientific workflows on the cloud. In
2014 9th Workshop on Workflows in Support of
Large-Scale Science (WORKS), pages 11–19. IEEE,
2014.

[30] D. Poola et al. Fault-tolerant workflow scheduling
using spot instances on clouds. Procedia Computer
Science, 29:523–533, 2014.

[31] D. Poola et al. Enhancing reliability of workflow
execution using task replication and spot instances.
ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 10(4):30, 2015.

[32] Pid simulator.
https://github.com/rafaelfsilva/pid-simulator.

[33] S. Srinivasan et al. A cleanup algorithm for
implementing storage constraints in scientific workflow
executions. In 9th Workshop on Workflows in Support
of Large-Scale Science, WORKS’14, pages 41–49, 2014.

[34] S. W. Sung et al. Proportional–integral–derivative
control. Process Identification and PID Control, pages
111–149, 2003.

[35] I. J. Taylor et al. Workflows for e-Science: scientific
workflows for grids. 2014.

[36] Y. Zhang et al. Combined fault tolerance and
scheduling techniques for workflow applications on
computational grids. In 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, pages
244–251. IEEE Computer Society, 2008.

[37] J. G. Ziegler et al. Optimum settings for automatic
controllers. trans. ASME, 64(11), 2010.


	Introduction
	Related Work
	PID Controllers
	Defining PID Controllers
	Workflow Data Footprint and Management
	Workflow Memory Usage and Management

	Experimental Evaluation
	Scientific Workflow Application
	Workflow Characterization
	Experiment Conditions
	Experimental Results and Discussion

	Tuning PID Controllers
	Determining Tu and Ku
	Experimental Evaluation and Discussion

	Conclusion
	References

