
Practical Resource Monitoring
for Robust High Throughput Computing

Gideon Juve1, Benjamin Tovar2, Rafael Ferreira da Silva1, Casey Robinson2

Douglas Thain2, Ewa Deelman1, William Allcock3, Miron Livny4

1University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA
{gideon,rafsilva,deelman}@isi.edu

2University of Notre Dame, Notre Dame, IN, USA
{dthain,crobins9,btovar}@nd.edu

3Argonne National Laboratory
allcock@alcf.anl.gov

4University of Wisconsin Madison, Madison, WI, USA
miron@cs.wisc.edu

ABSTRACT
Robust high throughput computing requires effective mon-
itoring and enforcement of a variety of resources including
CPU cores, memory, disk, and network traffic. Without ef-
fective monitoring and enforcement, it is easy to overload
machines, causing failures and slowdowns, or underload ma-
chines, which results in wasted opportunities. This paper
explores how to describe, measure, and enforce resources
used by computational tasks. We focus on tasks running
in distributed execution systems, in which a task requests
the resources it needs, and the execution system ensures the
availability of such resources. This presents two non-trivial
problems: how to measure the resources consumed by a task,
and how to monitor and report resource exhaustion in a ro-
bust and timely manner. For both of these tasks, operating
systems have a variety of mechanisms with different degrees
of availability, accuracy, overhead, and intrusiveness. We de-
velop a model to describe various forms of monitoring and
map the available mechanisms in contemporary operating
systems to that model. Based on this analysis, we present
two specific monitoring tools that choose different tradeoffs
in overhead and accuracy, and evaluate them on a selection
of benchmarks. We conclude by describing our experience
in collecting large quantities of monitoring data for complex
workflows.

1. INTRODUCTION
High-throughput computing (HTC) applications seek to

maximize the quantity of results produced over long time
periods, such as months or years. Hosted computing in-
frastructures such as grids, and more recently clouds, have
been widely used by the research community to address the
needs of such applications [37, 16, 31]. These systems are
becoming increasingly complex: Where clusters were once
typically single-core machines that ran single-process appli-
cations, they have become constellations of many-core ma-
chines that run many applications simultaneously. HTC
applications are also becoming more complex. Individual
tasks are often grouped into larger structures such as work-
flows [41], or Map-Reduce, which allow users to express
multi-step computational tasks such as retrieving data from
an instrument or database, running an analysis, and extract-

ing statistics.
Efficient and robust resource provisioning and scheduling

strategies are required to handle this category of applica-
tions. Scheduling and provisioning algorithms typically as-
sume that resource usage information such as wall time, file
size, and memory requirements, are all available in advance
or can be reliably estimated [2, 4, 1, 42, 23], but in prac-
tice this information is rarely available. As middleware layer
get information from the user, without detailed resource in-
formation, it is virtually impossible to make even a simple
decision such as how many tasks to run simultaneously on a
single machine.

In this work, we aim to gather information about the re-
source usage of high-throughput scientific applications so
that systems can make better scheduling and provisioning
decisions, and thereby improve overall throughput. Our
approach focuses on monitoring from the user perspective,
which implies different mechanisms, resolution and privi-
leges to those available to a system administrator. We first
collect resource usage data as applications are executed, and
then use this historical data to develop models that can be
used to estimate the resource usage of future executions of
the application [11]. These estimates can be used during pro-
visioning to select appropriate resources for the application,
in scheduling to ensure that sufficient resources are available
and that resources are used efficiently, and at runtime to en-
force limits on resource usage and to detect failures that are
caused by overconsumption. Note here that the monitoring
is done at a task, and not at a system level, as a task may
misbehave without having a noticeable impact on the host
system.

Although there are many operating system monitoring
and profiling mechanisms that can be used to collect re-
source usage information, there is no single mechanism that
meets our needs. This is partially due to the diversity of
available architectures and operating systems, but also due
to the fact that many monitoring mechanisms were designed
for entirely different purposes. For example, many operat-
ing systems provide whole-system summaries (such as
the global load average) and per-device statistics (such as
free blocks on a filesystem), but neither of these is appropri-
ate for measuring the independent resources consumed
by each job currently running on the machine. Collecting



Figure 1: Resource Monitoring Model

the desired information requires a combination of techniques
and trade-offs between accuracy, overhead, and complexity.
If resources are exhausted, it is important to know which
process misbehaved, so that the mechanism can be used
continuously during production operation to make suitable
resource allocation decisions.

In this paper, we first develop an abstract model of re-
source monitoring and establish what information is neces-
sary to make higher-level resource management decisions.
We survey the large number of mechanisms available in cur-
rent operating systems for obtaining the needed information,
and discuss the advantages and drawbacks of each approach.
We then select several mechanisms appropriate for contin-
uous monitoring of production jobs, and evaluate tradeoffs
in overhead and accuracy on a selection of benchmarks. We
conclude by describing our experience in collecting a large
amount of monitoring data from complex workloads.

2. RESOURCE MONITORING MODEL
We begin by describing a model of resource monitoring

that is independent of the available mechanisms, so that we
can clearly lay out what we intend to measure, and then
compare our intent to the many available mechanisms.

2.1 Resource Monitoring Loop
Resource monitoring is one component of the overall re-

source management problem in HTC. Broadly speaking, we
assume that an HTC system consists of a scheduler with
a queue of tasks that must be executed, an execution sys-
tem with resources for running tasks and storing data, and
an archive for storing information about the resource usage
of completed tasks (Figure 2). The scheduler queries the
archive for historical data that can be used to construct a
model for predicting the resource requirements of queued
tasks. Based on the model, each task is labeled with an es-
timate of the resources it requires for a successful run (run-
time, cores, memory, disk, etc.). The scheduler provisions
resources from the execution system based on the resource
requirements of queued tasks, and schedules the tasks to be
executed on the provisioned resources. A resource monitor
runs alongside each task, observing its resource consump-
tion, and enforcing usage limits set by the scheduler based
on its resource estimates. If the task stays within the spec-
ified limits, then it runs to completion. If it exceeds its

Figure 2: Resource Monitoring Loop

resource limits, then the monitor forcibly halts it. When
the task finishes, the monitor sends a report of the resources
actually used to the archive.

Within this loop, a large number of challenging problems
may arise, such as how to generate resource estimates, how
to allocate tasks to machines, and so forth. In this paper,
we focus entirely upon the design and implementation of the
resource monitor which runs alongside each task. With ac-
curate information and an enforcement mechanism in place,
future work will address the other components of resource
management.

The monitor plays both a measurement and enforcement
role. It must observe the resources requested by the task
and compare them to the resources provided by the OS. To-
gether, these form the resources contract. A monitor must
examine both sides of the contract, so that it determine
if the task exceeds its stated needs and terminate it in an
appropriate fashion. Upon completion, the monitor must
produce a report that indicates the resources consumed by
the application, and whether the contract was satisfied. The
report could be a detailed summary of resources consumed
over time, or simply the maximum of each during the run.

2.2 Monitoring Mechanisms
Figure 1 shows our basic model of resource monitoring.

For clarity, we start with the problem of monitoring a single
process, and extend it to multiple processes later.

An application process performs actions that affect the
state of resources managed by the OS. Each resource has
properties that summarize the current state of the resource.
A monitor observes the behavior and results of the process
to measure its resource usage. There are three general meth-
ods by which the monitor may attempt to learn about the
resource usage of the process. It may be interposed between
the process and the resource in order to learn precisely what
the process is doing by intercepting its actions. It may query
the properties of the resource that are tracked by the OS.
Or it may request that the OS send notifications when the
state of the resource changes.

For example, if we apply this model to a process using a
file, then the resource is the file itself, the actions of the pro-
cess are I/O system calls that manipulate the file, and the
properties are information such as the size of the file. The



monitor may learn about the process’s behavior by query-
ing the file properties with stat(), by receiving notifications
about file changes via inotify(), or by interposing I/O sys-
tem calls with ptrace().

There are inherent tradeoffs between each monitoring tech-
nique. Generally, interposition offers the greatest accuracy
in determining the intent of a process, because it sees each
operation before the OS has an opportunity to act upon
it. This also permits the interposer to prevent an action
before a resource is overconsumed. But, interposition gen-
erally has significant overhead and complexity and must be
implemented carefully to avoid changing the behavior of the
monitored process.

Queries are usually the easiest mechanism to implement,
but the information returned is immediately out of date. Re-
peated queries at a rapid rate will result in more timely in-
formation at the cost of increased overhead. But, reliance on
queries can result in incorrect monitoring: a temporary re-
source spike between measurements might be missed. Even
if a query indicates overconsumption of a resource, the mon-
itor can act to stop the process, but the damage has already
been done, and other processes on the machine may have
failed as a result.

Notifications from the operating system, where available,
are more accurate than repeated queries because they rely
upon the OS to detect key events and report them reliably,
using much less traffic. However, like queries, they report
upon completed events and do not permit the monitor to
prevent problems before they happen.

Given these considerations, practical resource monitoring
requires the use of all three techniques. Different resource
types may call for different kinds of monitoring, and different
operating systems and conditions may call for different ap-
proaches. For example, interpositions may substitute when
notifications are not available, or coarse notifications might
be used to trigger fine-grained queries for more detailed in-
formation.

A task may also involve multiple processes arranged in a
process tree. In such cases it is necessary for the resource
monitor to track and measure the resource usage of all the
processes and sum the results appropriately. In order to do
this, the monitor needs to use mechanisms that enable it to
observe the creation and termination of processes, and de-
termine the relationships between them. For example, the
monitor may be able to query the OS to get a list of pro-
cesses, or ask the OS to deliver notifications when processes
start and stop, or interpose functions involved in process
management such as fork() and exit().

2.3 Resource Types
We wish to monitor resources in three general categories:

computation, memory, and I/O. For each of these resources,
it is important to clearly distinguish between the behavior of
the process and the resources provided by the OS, which are
not the same thing. Broadly, interposition methods capture
behavior, while notifications and queries observe resources
provided by the OS.

Computation We model computation as one or more
concurrent threads, each of which can be described by a
set of increasing counters that yield useful measurements
such as number of instructions completed. The computation
resources actually delivered by the OS include the number of
cores allocated to the task, the number of GPUs allocated,

the cumulative time resident on each core, and, the hardware
performance counters associated with each core.

For example, if a task consists of one process with eight
concurrent threads, we would describe application behavior
as the instruction counts for each individual thread, while
we would describe the resources provided as the number of
cores actually used which could vary between zero and eight
over time.

Following our model of actions, properties, and notifica-
tions, information regarding computation resources can be
obtained by interposing on actions that affect concurrency
(pthread_create) by querying the operating system for wall
and CPU time consumed by a process, or by observing the
busy/idle transitions of a given core.

Memory We model memory consumption as the total
virtual address space allocated by the process. Processes
on modern OSes have a complex virtual memory space con-
sisting of many logical segments dedicated to the stack, the
heap, memory mapped files, and so forth. For each of those
segments, we may describe the resources actually consumed
as the number of resident pages in physical memory (resident
set size) and the swap space in use.

A complication arises with applications that rely on the
presence of virtual memory to optimize physical memory
consumption. For example, an application might allocate a
very large virtual address space, and then only touch a few
pages. Or, it may memory map a large file, but never read
it. In these cases, a complete description of the application’s
behavior must include both the virtual address size and the
physical memory consumed. In addition, since memory use
changes over time, it is important for resource allocation
purposes to capture the maximum, or peak, memory usage.

Information regarding memory resources can be obtained
by interposing actions that modify allocation (e.g., malloc()
and free()), by directly querying the operating system for
the amount of memory used (e.g., getrusage()), or by ob-
serving page fault events.

I/O We model the I/O behavior of an application as the
complete list of operations (read, write, delete) applied to
named objects (files or network connections). Of course,
logging every single operation is expensive and rarely nec-
essary. Instead, summaries of the number of operations and
total data transferred are usually sufficient.

Again, there is a distinction between what the application
requests and what the OS provides. For example, a process’s
read from a file may result in data being fetched from the file
system cache, or from a local disk if the data is not cached.
The former case does not involve any disk I/O while the
latter does.

I/O monitoring involves interposing actions such as open-
ing, reading, and writing to files, querying the operating
system for properties such as files sizes, and observing file
creation, modification, and deletion events.

2.4 Monitoring Challenges
There are several challenges and constraints that we en-

counter when trying to measure the resource usage of high-
throughput computing applications. These challenges range
from fundamental resource monitoring issues, to system- and
application-specific challenges. They include:

• Variability. Resource usage may vary widely over
time. For example, I/O may occur at the beginning
and end of a process, but not in the middle. As a



result, it may be more useful to look at quantities such
as total, peak or average resource usage, which may be
more useful for resource planning than a time series.

• Aliasing. Aliasing refers to a single entity being ac-
counted more than once. For example, hard links may
appear as different files in the file system hierarchy,
such that the file size is counted more than once. Sim-
ilarly, the memory used by two concurrent processes
in a task may be double counted if both use the same
shared library.

• Timing. Some resource monitoring mechanisms can
provide the data required, but provide no way to deter-
mine when it will be available. For example, the size
of a file can be determined with stat(), but stat()

gives no indication as to when a process is finished
writing to the file. In those cases it may be necessary
to combine multiple monitoring approaches, such as a
query triggered by a notification, to obtain the desired
information.

• Parallelism / Concurrency. Many scientific appli-
cations are parallelized using threads or message pass-
ing to improve performance. In some cases it may be
difficult to develop a scalar measure of resource usage
for parallel tasks. For example, it is relatively straight-
forward and intuitive to measure the total I/O of a
parallel task, but it may be more complicated and dif-
ficult to measure the peak memory usage of a parallel
task.

• Operating Systems. Many, if not most, scientific
applications run on Linux, but other operating systems
are frequently used for development, such as Mac OS
X, and some proprietary scientific applications only
run on Windows. In addition, many high-performance
systems, such as IBM Blue Gene and Cray supercom-
puters run simplified kernels for performance reasons.
These kernels lack many useful monitoring features
found in other operating systems. They often have no
virtual memory and are constrained in terms of RAM
per core. This means limiting resource consumption
for monitoring, and enforcing resource usage limits, is
even more critical.

• Permissions. Because they provide access to sensi-
tive data about a process (data that could lead to secu-
rity vulnerabilities), many monitoring mechanisms re-
quire superuser (root) privileges. Unfortunately, many
scientific applications run on systems owned and main-
tained by universities, supercomputer centers, and gov-
ernment laboratories. Getting root permissions on these
systems for application-specific monitoring is usually
not possible.

• Scripts. Many high-throughput applications and work-
flows are composed of a mix of binary programs and
scripts in shell, Python, R, Matlab and other inter-
preted languages. Monitoring mechanisms that require
users to recompile or relink their applications with
tracing functions is usually not feasible for such appli-
cations because it would require them to have access
to source code for the interpreters and the knowledge
to recompile them.

3. MONITORING MECHANISMS
As mentioned in Section 2 we distinguish between three

general mechanisms for obtaining process and task-level re-
source usage information: queries, notifications, and inter-
positions.

3.1 Query Mechanisms
There are many system calls and library functions that

can be used to query resource usage. getrusage() is a stan-
dard UNIX system call that can be used to get information
about the computation, memory and I/O of a task. Un-
fortunately, information available from getrusage() varies
between implementations, as the POSIX standard only re-
quires the report of CPU times (for example, Linux and Dar-
win populate the I/O fields differently). The stat() family
of functions can be used to get information about file sizes.
statfs() provides information about mounted file systems,
such as the number of used and free inodes and blocks. This
information could be used to estimate the amount of disk
space used by a task, or to ensure that there is enough disk
space available to run a task.

A common source of resource usage information, special
on Linux systems, is procfs. procfs is a virtual file sys-
tem (typically mounted at /proc) that exports data about
the state of the operating system, including system-level
and process-level information about memory, CPUs, disks,
and filesystems. The information available in procfs varies
widely among UNIX systems, but on many systems there is
a directory for each process with files for different types of
information about the process. For example, Linux provides
/proc/[pid]/stat, which contains CPU usage information
(utime, stime) and current memory usage, /proc/[pid]/status,
which contains information about peak memory usage, and
/proc/[pid]/io, which contains information about the num-
ber of bytes read and written by the process.

Hardware performance counters can provide information
about the computation resources used by a process. These
counters track the number of hardware operations performed
by a CPU core in special-purpose registers. The types of
counters available on different systems varies widely, but
typically there are counters for cycles, instructions, floating-
point operations, cache hits, cache misses, branches, loads,
stores, and many other CPU operations. PAPI [33] is a pop-
ular library for querying performance counters, and Linux
provides a tool called perf [32] to record performance coun-
ters at the process level.

For GPUs, while the interface may vary amongst vendors,
most drivers provide a mechanism for inquiring about the
utilization of GPU resources by a given process. For exam-
ple, nvmlDeviceGetAccountingStats, included in NVIDIA’s
Management Library [30], provides utilization statistics, such
as the number of threads, processor time, and memory con-
sumed.

3.2 Notification Mechanisms
In notification mechanisms the operating system deliv-

ers messages to the monitor when the state of a resource
changes. A simple example is the wait4() system call found
on most UNIX systems, which blocks the caller until one
of its children exits and returns information about the re-
source usage of the exiting child (the same information as
getrusage()).

Linux provides inotify() for monitoring file system events.
The monitor registers to recieve notification when files and
directories are opened, closed, modified, deleted, or moved.



Unfortunately, the events reported are not associated with
a process ID, so it is difficult to use for monitoring the files
accessed by a specific task, unless each task has a unique
working directory or only one task is allowed to run at a
time.
ptrace() is a UNIX system call that is used to implement

debuggers. Linux provides an extension to ptrace() for
observing process creation and exit events. This extension
is useful for tracking the genealogy of a task’s process tree,
and, because ptrace() stops the traced process on exit(),
for observing the final state of a process before it is cleaned
up (e.g. peak memory usage from procfs).
taskstats [40] is a query/notification interface for col-

lecting information about processes on Linux. It uses a
netlink socket to deliver resource usage data for processes
and threads from the kernel to the monitor. This data
includes values returned by getrusage(), such as utime
and stime, as well as information available in procfs, such
as bytes read and written and peak memory usage. The
monitor can use taskstats to query for data about all pro-
cesses/threads, about a specific process/thread, or register
to receive events whenever a process/thread exits.

Kernel probes are another category of notification mech-
anisms. Probes are implemented as tracing points in the
kernel that can be turned on and off by the monitor [25, 18].
Probes are placed at key locations in the kernel where they
can report useful information about the system. Events are
reported to the monitor every time a kernel thread encoun-
ters a probe that the monitor is interested in. For example,
probes in the kernel VFS layer can report information about
operations on files and directories. DTrace [8] on Solaris and
SystemTap [39] on Linux are similar approaches for using
kernel probes. Both systems provide a scripting language
that enables users to define actions to associate with differ-
ent probes, such as incrementing a counter or printing infor-
mation. Because they have access to sensitive information
about the entire system, most kernel probe implementations
require the monitor to have superuser privileges.

3.3 Interposition Mechanisms
These are mechanisms in which the monitor intercepts

actions performed by the process. System call interposi-
tion is a commonly used technique where every system call
made by a task is intercepted by the monitor. This en-
ables the monitor to observe I/O and file access information
by intercepting the system calls associated with those func-
tions, such as open, close, read and write. System call
interposition can be implemented using ptrace() with the
PTRACE SYSCALL flag. On other systems, system calls
can be replaced with software breakpoints using ptrace()

to achieve the same result. System call interposition usu-
ally has a very high overhead because ptrace() generates a
signal to stop the traced process and a context switch every
time a system call enters or returns from the kernel.

In function interposition the monitor provides wrappers
that replace and call original functions. These wrappers
record information about the parameters and the results of
wrapped functions. This can be achieved in a number of
different ways. Compile-time techniques require the appli-
cation code to be modified by either importing a header that
redefines the wrapped functions, or by replacing all the func-
tion references in the program to be traced with the equiv-
alent wrapped versions. Function interposition can also be

performed at link time by telling the linker to consider the
wrapper functions before the wrapped functions when re-
solving symbols. Care needs to be taken when defining the
wrappers so that name collisions can be resolved, and the
wrapper functions can still call the wrapped functions. This
is usually accomplished by providing alternate names for the
wrapped functions. For example, the MPI standard specifies
an interposition mechanism for profiling MPI applications
called PMPI that enables users to specify a profiling library
at linking time to intercept MPI function calls (see Chapter
8 of [26]). The specification requires that all MPI imple-
mentations provide alternative names for MPI functions by
prepending the letter “P” so that profiling libraries can pro-
vide their own implementation of the MPI interface, and
call the implementation-specific functions, without causing
a naming conflict. Alternatively, the GNU linker provides a
--wrap option that allows arbitrary symbols to be wrapped.

Function interposition can also be implemented for shared
libraries with help from the dynamic linker. In this ap-
proach, the LD PRELOAD environment variable is used to
tell the dynamic linker to use the symbols from the library
with the wrapper functions in place of the symbols from the
library with the wrapped functions. The wrapper library
then uses dlsym() to locate and call the wrapped functions.
This approach only works if the wrapped functions are in
a shared library and if the program is not statically linked.
Despite these limitations, function interposition is a power-
ful method to monitor vendor-specific devices; for example,
it can be used to determine which GPUs are being accessed
by the monitored process by preloading a wrapper for the
cuCtxCreate() function from the NVIDIA’s CUDA library.

Interposition can also be achieved at the file system level
using a virtual file system that records information about
I/O operations before passing them on to another file sys-
tem that stores the actual data [9]. chroot can be used to
ensure that all I/O performed by the task passes through
the virtual file system transparently. This approach is effec-
tive at capturing I/O and file accesses with low overhead,
but requires superuser privileges to mount the file system
and chroot the task.

Finally, dynamic binary instrumentation (DBI) is a tech-
nique for profiling applications that could be used for re-
source monitoring. In this approach, the monitor modifies
the application binary at runtime to insert profiling instruc-
tions and software breakpoints. Projects such as DynInst [10]
and Intel PIN [17] provide libraries for writing monitors that
use DBI.

3.4 Monitoring on the Blue Gene Supercom-
puter Family

In this section we introduce some of the particular chal-
lenges when monitoring resources for Blue Gene supercom-
puters at the Argonne Leadership Computing Facility. For
presentation purposes, rather than classifying the available
mechanisms into interpositions, queries, and notifications,
we give a brief description on some unique aspects of the
Blue Gene architecture, together with their respective mon-
itoring tools.

There are three general source of data on Blue Gene super-
computers: 1) The control system database and the cobalt
scheduler database for basic job data, 2) autoperf, a mem-
ory and performance counter data tool, and 3) Darshan, an
I/O monitoring tool.



Unlike many supercomputers, which have relatively com-
modity blade-like nodes, the Blue Gene uses a System-on-a-
Chip (SoC) design where all the coordination, monitoring,
control, etc., take place on a separate “service node” and the
compute nodes are stripped down and optimized for pure
computation. The service node is a DB2 (IBM’s commercial
database offering) server, running on commodity hardware,
that maintains detailed state and history of the system. The
service node interacts directly with the schedule, and is the
definitive source of data for job (or task) start, stop, run
time, and the number of nodes allocated to the job.

In contrast, the cobalt scheduler database provides insight
into how jobs are organized. Some examples of this are:

• Due to the Blue Gene network architecture, the num-
ber of nodes that can be allocated to a job is not arbi-
trary. They have to be allocated in ”blocks”. When a
job asks for a number of nodes that is not equal to a
block size, they are allocated the next larger block size.
The Blue Gene control system will report the number
of nodes in the block. The cobalt scheduler database
will report the number requested and the number ac-
tually used by the job. In theory, this could also be de-
termined by he FLOP count (discussed below), which
will be zero for unused nodes.

• Script jobs and ensemble jobs can have many Blue
Gene jobs (or tasks) for a single scheduler job.

The control system database records every reliability, avail-
ability, and serviceability event generated during a job. This
information can be easily use to detect jobs showing un-
usual variations in computational performance. The history
of events is preserved, such that it is also possible to check
for events that could have impacted the performance. For
instance, on the BG/P correctable memory errors cause a
performance loss, while on the BG/Q, the errors can be cor-
rected without performance penalty.

The autoperf tool is a joint development between the Ar-
gonne Leadership Computing Facility and IBM research.
There are two mechanisms for gathering data in autoperf.
The first is relatively straight-forward: a pre-job script con-
figures and zeros out the performance counters of interest on
all the nodes for the job, and a post-job script aggregates and
calculates statistics on those performance counters. There
are over 200 data points available via this mechanism. For
instance, this is how we can obtain total FLOPs, as well as
the FLOPs that were executed in the quad floating point
unit (QPX). This approach has effectively zero overhead
from a job performance perspective, however it can fail if
the user reprograms the performance counters for their own
use.

The second mechanism used by autoperf is the standard
PMPI interposition mechanism. Our initial configuration
under test has been stripped down to a minimal set of func-
tions and data to minimize the impact on performance. For
instance, for each MPI call, it performs two adds–one for the
number of times this routine has been called and one for the
number of bytes (where that makes sense)–two compares–
for max and min–and a store if there is a new max or min.
When mpi_finalize() is called, the data is aggregated and
additional statistics are calculated. This method can fail if
another tracing or debugging tool also uses the PMPI inter-
position mechanism.

We do not currently know of mechanisms for obtaining
data on peak memory usage, though we have discussed a
mechanism that we can add to the autoperf tool in order to
obtain estimates. That said, there are library calls available
that can query various aspects of memory usage, such as the
size of the text, data, and BSS segments, together with the
maximum amount of memory consumed on the heap.

We also use Darshan [3], a resource monitoring tool with
two major design points. First, it was explicitly aimed at
parallel I/O, since there are no well accepted tools for doing
so. Second, it was design to consume a small amount of re-
sources, with a fixed maximum, and as close to zero overhead
as possible. Darshan also uses the standard PMPI profiling
interface to interpose MPI I/O and other techniques for in-
terposing POSIX I/O functions. To meet the second design
point, Darshan captures a statistical cross section of the I/O
rather than full stats. For instance, for the write size, which
is a critical parameter in I/O, it keeps a histogram of sizes
rather than a complete list of every file size. However, it
does keep track of the 4 most common exact write sizes.
Data is kept at each individual MPI rank and Darshan does
no internode communication until the mpi_finalize() call
is made. At that point the ranks do a gather of all the indi-
vidual rank data sets and write out the input. Output is on
a per job basis and tools are provided to assist in analyzing
the data. The data obtained for each call is exact, so there
is no estimation or error introduced here, though obviously
information is lost by the statistical reduction of the data.

3.5 Comparison of Mechanisms
Table 1 compares the various resource monitoring mecha-

nisms described above based on several key characteristics.
These characteristics include:

• Mode refers to the mode of operation, which is either
query, notification, or interposition.

• Resources refers to the set of resources that can be
monitored with a given mechanism. For example, procfs
can provide information about the processes (P), threads
(T), computation (C), memory (M), I/O (I) and files
(F) associated with a task.

• Effort refers to the relative amount of work required to
use the resource monitoring mechanism. This ranges
from simply calling a system call or opening a file, to
writing hundreds of lines of intricate code.

• Overhead refers to the level of performance degrada-
tion imposed on the task when using a given resource
monitoring mechanism. This varies from none in the
case of wait4(), to high in the case of system call in-
terposition.

• Portability refers to the availability of the resource
monitoring mechanism across different operating sys-
tems. Some mechanisms are standard features on all
POSIX systems, like wait4(), others are available in
only one operating system, like taskstats on Linux.

• Privileges refers to the level of security permissions
required to use the mechanism. Some mechanisms can
only be used by superusers, some mechanisms can be
used by superusers or the owners of a process, and
others can be used by any user on the system.

• Intrusiveness refers to the degree to which the mech-
anism interferes with the normal behavior of the task.



Some mechanisms, such as interposition, are highly in-
trusive, while others, such as stat() have little or no
impact on the task.

• Scope refers to the set of objects targeted by a mon-
itoring mechanism. This can range from the whole
operating system in the case of kernel probes, to indi-
vidual files and directories for inotify().

• Notes refers to the significant limitations of a mech-
anism. For example, systems differ in how they popu-
late the fields returned by getrusage().

3.6 Detailed Example: Memory-Mapped I/O
Memory-mapped I/O is an interesting case, because it

combines multiple resources and multiple access types. The
mmap() system call establishes a memory segment that corre-
sponds to a file, and I/O is performed and physical memory
is allocated when addresses within the mapped segment are
accessed by the process.

• After an mmap call, only the virtual memory size is
modified, to fit the memory addresses of the mapped
file. The value of the peak virtual memory might be
accessed by querying the OS when the task finishes,
or estimated by querying/polling. The intent to re-
serve a virtual memory segment can be captured by
interposing the call to mmap(). Note that if only a
small portion of the file is ever accessed, then virtual
memory may greatly overestimate memory usage.

• When the task tries to read from a memory address in
the mapped file, a memory page fault occurs and I/O
operations occur in the disk. The number of bytes read
therefore is a function on the total count of page faults.
This count could come from a query to the OS, or
by directly counting the number of page fault events.
Similarly, to account for bytes written, the number
of pages modified (i.e., dirty pages) that need to be
synchronized with the file on disk may be found, We
note that this information is unavailable, or restricted
in most operating systems implementations.

• As the free resident memory decreases, some of the
memory pages might be removed from resident mem-
ory. The peak resident memory used by a memory
mapped file could be computed from counting the events
of page faults/discards, or from a query to the OS. As
mentioned above, this information is often unavailable
(for example, a query in Linux provides the current
resident memory usage by a memory mapped file, but
not peak usage).

4. MONITORING TOOLS
In this section we describe the implementation of two tools

we have developed for monitoring the resource usage of HTC
tasks: resource monitor, which is part of CCTools [5], and
Kickstart [6], which is part of the Pegasus Workflow Manage-
ment System [7]. Table 2 describes the resource and process
information these tools record for each task.

4.1 Levels of Measurement
When implementing monitoring mechanisms, we found it

helpful to establish levels of monitoring. These levels de-
scribe how intrusive a tool is when monitoring a task. The
levels we defined are:

Level 1: Only query mechanisms and low overhead, non-
intrusive notifications such as wait4() are used. Since
there is no general method for obtaining the full process
tree in level 1 (in Linux, one could periodically inspect
the contents of procfs, but this is error prone as it would
miss short running processes), this level is mostly useful
for processes that do not fork.

Level 2: Interpositions and events are used for detecting
when processes start and stop. By interposing, for ex-
ample, fork and exit calls, the process tree can be easily
observed. Once the process tree is known it is possible to
record CPU times, virtual, resident, and swap memory,
and bytes written and read by inspecting sources such
as procfs for each process.

Level 3: Full system call or function interposition is used.
By capturing open, read and write calls, this level pro-
vides the most precise measurements for files accessed
and I/O.

4.2 Kickstart
Kickstart [6] is used to launch computing tasks, monitor

the behavior of tasks, and report information about tasks
and the hosts on which they were executed. Kickstart was
originally designed to be used with Pegasus [7], but it can
also be used separately. Kickstart implements all three mon-
itoring levels, with level 1 being the default, and levels 2 and
3 enabled via command-line flags.

For all levels Kickstart uses procfs and other query mech-
anisms to gather basic information about the host, such as
the number of CPUs and CPU cores, the amount of used
and free system memory, the number of running tasks, the
system uptime, and the hostname. It uses wait4() to ob-
tain CPU usage (utime and stime), and gettimeofday() to
compute the wall time of the task. In addition, Kickstart
can optionally use stat() and a list of the task’s input and
output files to infer the amount of I/O performed by the
task.

Kickstart implements monitoring levels 2 and 3 using ptrace().
ptrace() is used for events and interposition because, un-
like other interposition mechanisms, it does not require the
application code to be recompiled, and because it works on
all binaries regardless of whether they are statically or dy-
namically linked.

For level 2, Kickstart uses ptrace() to intercept only
process creation (fork(), vfork(), clone(), exec()) and
exit() events. When a process exit event occurs, it inspects
/proc/[pid]/status to determine peak memory usage (VM
and RSS high water marks) and total I/O (bytes read and
written). The process creation events are used to track new
processes created by the task, and the exit events are used
to observe the state of the processes when they have fin-
ished executing their computations, but before they have
fully exited. This latter capability is critical for capturing
accurate final statistics for the process in procfs. If Kick-
start attempts to check procfs after wait4() returns, then
the process will no longer exist under /proc/[pid]. If Kick-
start checks before the process calls exit(), then procfs may
not reflect the final peak memory and total I/O of the pro-
cess. By capturing the exit event with ptrace(), Kickstart
can ensure that the process is finished, but that it still ex-
ists in procfs. This approach provides accurate memory and
I/O measurements without adding a significant amount of



Table 1: Comparison of Resource Monitoring Mechanisms
Mechanism Resourcesa Effort Portability Overhead Privileges Intrusiveness Scope Notes

Query mechanisms
perf. counters C Low All Low Owner Low Process

procfs C,F,M,I,T,P Low UNIX Low Varies Low System, Process b

stat() F Low POSIX Low Any Low File
statfs() F,I Low UNIX Low Any Low File System
getrusage() C,M,I Low POSIX Low Owner Low Process c

GPU Libraries C Medium Linux Low Any Low Process d

Notification mechanisms
taskstats C,M,I,T,P Low Linux Low Owner Low Process
ptrace() events T,P Medium Linux Low Owner Medium Process
inotify() F Low Linux Low Any Low File, Directory e

wait4() C,M,I Low UNIX Low Owner Low Process f

Interposition mechanisms
sys call interp. F,I,T,P High Linux High Owner High Process
function interp. F,I,M,T,P Medium All Low Developer High Process g

LD PRELOAD F,I,M,T,P High UNIX Medium Owner High Process h

virtual filesystem F,I High All Medium Superuser Low File System
kernel probes C,F,M,I,T,P Medium UNIX Low Superuser Low System
DBI C,F,M,I,T,P High All Medium Owner High Process

a
P: processes, T: threads, C: computation, M: memory, I: I/O, F: files

b
Some information is only accessible by owner and superuser. Availability of data varies among UNIX systems.

c
Some systems do not populate memory and/or I/O

d
With supervisor privilege scope is expanded to System, Process

e
Does not associate events with processes

f
Some systems do not populate memory and/or I/O

g
Requires re-compiling or re-linking

h
Only works for dynamic libraries

overhead.
For level 3, Kickstart uses ptrace() to gather detailed in-

formation about the files accessed by a process and the I/O
performed on those files. In this mode, Kickstart interposes
system calls, and inspects the arguments and return val-
ues for I/O system calls such as open(), close(), read(),
write() and others. In this way it can keep track of ex-
actly which files are opened by the task, and exactly how
much I/O is performed on each one. In addition, it can
observe I/O performed on terminals, sockets, FIFOs, and
pipes. This mode provides more accurate and detailed file
and I/O information than the previous list-of-files approach,
but adds some overhead in the form of extra context switches
on each system call performed by the task.

4.3 resource_monitor
resource monitor implements monitoring levels 1 and 2.
For level 1 it continuously polls different query mecha-

nisms, such as procfs on Linux, and the kernel kvm inter-
face on FreeBSD. The getrusage() system call is used to
get CPU usage information such as user and system time,
and the peak resident memory size. Additionally, it uses
calls from fts.h to periodically record the total size and file
count of the working directory. This can be made more pre-
cise by providing the monitor with a list of directories and
files to watch.

Level 1 is less intrusive and has lower overhead than Level
2, but results in reduced accuracy as as shown in Section 5.
This is because polling causes the monitor to miss peak us-
age values. In general, the longer the polling interval the
less accurate the monitor will be in level 1.

For level 2 resource monitor uses the LD PRELOAD mech-
anism to interpose process management functions such as
fork, exit and wait. LD PRELOAD was chosen because
it has less overhead than ptrace(), and requires less ef-
fort to implement. However, LD PRELOAD does not work

for binaries that have been statically linked. Special care
is required using LD PRELOAD to synchronize the mon-
itor with fork/exit events from the process tree. Ideally,
the monitor should measure peak resource usage values just
before the task exits; otherwise, when the monitor finally
detects that a task has terminated, its information is not
available in the kernel anymore. To enable this, if the task
was compiled with gcc, then the monitor also interposes the
destructor attribute, which allows to detect when a process’s
main() completes or exit() is called. In addition, in level
2 resource monitor uses inotify() to record which files are
accessed by the task, when it is available.

By default, resource monitor generates up to three report
files: a summary file with the maximum values of resource
used (see Table 2), a time-series that shows the resources
used at periodic time intervals, and a list of files that were
opened during execution. resource monitor can be used as
a watchdog by specifying maximum resource limits; when
one of the resources goes over the limits specified, the task is
terminated, and a report in the summary is made to indicate
the resource exhausted.

5. EVALUATION
In this section we evaluate our implementation of the dif-

ferent monitoring levels described in Section 4.1. For level 1,
we use resource monitor using only queries with a sample
polling period of 1 second; for level 2, we capture fork/exit
events using LD PRELOAD with resource monitor, and ptrace
events with kickstart; finally, for level 3, we also interpose
system calls using ptrace with kickstart. We first evaluate
the accuracy of these tools while measuring CPU, memory,
and I/O consumption on mock processes, and then we eval-
uate the performance impact (overhead) of performing mon-
itoring. The experiments were conducted on a 12-core Intel
Xeon 2.67GHz with 40GB of RAM. For each configuration,



Table 2: Resources measured
Field Notes
cores Number of cores used by the task
gpus Number of gpus used by the task
start The timestamp when the process started, sec-

onds since epoch
end The timestamp when the process exited, sec-

onds since epoch
exit type normal indicates that it called exit() with a

zero OR non-zero exitcode, signal indicates
it exited on an uncaught signal, and limit in-
dicates it was killed for exceeding one of its
resource limits

signal The number of the signal that terminated the
process, if any

exit status The status returned by the task
limits Comma-separated list of all of the resource

limits that were exceeded, in the form field:
peak > limit, field: peak > limit, etc., if any

concurrent procs. The maximum number of processes that ran
concurrently

cpu time The total CPU time of the process
(utime+stime)

wall time end time - start time
virtual memory Maximum sum of virtual memory peaks of all

the sets of concurrent processes
resident memory Maximum sum of resident memory set peaks

of all the sets of concurrent processes
swap memory Maximum sum of swap memory peaks of all

the sets of concurrent processes
bytes read Count of all of the bytes read in I/O opera-

tions.
bytes written Count of all of the bytes written in I/O op-

erations.
number files/dirs The peak count of files and directories in the

working directory.
footprint The peak value of the size of all files and di-

rectories in the working directory.

5 repetitions of the experiment were performed, which were
sufficient to obtain average values with less than 2% error.

5.1 Accuracy
Table 3 shows accuracy results for CPU, memory, and

I/O. To evaluate CPU accuracy, we developed a program to
repeatedly compute the sine and cosine of random numbers.
We varied the computation size from a million (106) up to
a billion (109) instructions. Table 3(a) shows the average
CPU time (utime+stime) for each configuration when exe-
cuted without monitoring (Baseline), and the error ratios of
these times reported by the monitoring tools when compared
to the actual values. Positive error ratios (resp. negative)
mean that the monitoring tool overestimates (resp. under-
estimates) the CPU consumption. In all cases, the error ra-
tios are positive, which suggests that the monitors are caus-
ing the monitored process to use more CPU time to do its
job, possibly due to cache interference or context switches.
In general, the resource monitor seems to have more of an
impact than Kickstart, probably because polling introduces
more overhead than ptrace() in cases where there are few
system calls.

To measure the accuracy of memory monitoring, we de-
veloped a program that allocates 16GB of memory and fills
between 1GB and 16GB of it with data. We expect the mea-
surement reported by each tool to be equal to the amount
of memory filled with data. Table 3(b) shows the average
error ratios of memory consumption value reported by the
monitoring tools. The values measured by both Kickstart
and resource monitor are reasonably accurate in all cases
except for the polling case. The relatively large errors for

the polling case are all underestimates, and reflect the fact
that the polling approach is not able to detect when memory
usage peaks because the process exits before the final value
can be measured. This is a fundamental limitation of the
polling approach.

Finally, I/O accuracy was determined using two differ-
ent experiments: 1) fixing the buffer size and varying the
amount of data read and written, and 2) fixing the file
size and varying the buffer size. Both experiments use the
O DIRECT flag to reduce the impact of the file system cache
on the results.

For the first I/O experiment, we developed a program to
read and write 1MB, 100MB, 1GB, and 10GB of data using
a 4KB buffer. Table 3(c) shows the average error ratios for
bytes read reported by the monitoring tools. Note that the
error values for bytes written were similar to the values for
bytes read, so they have been omitted. Again, the values
reported by both tools are accurate with the exception of
the polling case, which systematically underestimates the
amount of data read and written because it is unable to
record a measurement right before the process exits.

For the second I/O experiment, we developed a program
to read and write 1GB of data with buffer sizes ranging
from 4KB to 32KB. Average error ratios for bytes read are
shown in Table 3(d). Again, the results for bytes written
were similar to bytes read, so they have been omitted. Like
the previous experiment, the values measured by using the
monitoring tools are precise with the exception of the polling
case.

5.2 Overhead
The overhead of the monitoring tools was measured for

the same experiments described in the previous section.
Table 4(a) shows the CPU overhead in seconds, and the

percentage overhead in brackets, for all the experiments from
the previous section. A relatively large overhead is observed
for very short executions, but as the execution time in-
creases, the overhead becomes less than 1%. This reflects
a small, approximately constant overhead for all the tools.

The impact of memory monitoring is shown in Table 4(b).
In most cases the overhead is less than 5% regardless the
amount of data written. The overhead is slightly larger in
the case of LD PRELOAD. We belive there are two reasons
for this: First, resource monitor writes to disk the library to
be preloaded; and second, there is extra overhead caused by
the monitor synchronizing the end event of the task when
intercepting exit().

Both tools have a more significant impact on performance
in the case of I/O monitoring. For the first I/O experiment
(variation of the data size) shown Table 4(c), the average
overhead is above 1000% for a small amount of data, but
this is likely just a result of the very short runtime of the
program. As the amount of read/written data increases,
the overhead ratio progressively decreases to less than 2%
in most cases. In the case where Kickstart interposes system
calls, however, the overhead remains high. This is a result of
the large number of system calls that are intercepted, which
each impose an overhead on the process.

For the second I/O experiment, shown in Table 4(d), when
the size of the buffer is varied from 4KB to 32KB the number
of system calls is significantly reduced and, consequently, the
overhead of the system call interposition case is also reduced.
In the other cases, the overhead remains approximately the



Table 3: Monitoring Accuracy
Baseline Polling fork/exit fork/exit syscall

LD PRELOAD ptrace ptrace
(resource monitor) (resource monitor) (kickstart) (kickstart)

Instr. (a) CPU time

106 0.32 s +0.04 (12.50%) +0.02 (4.91%) 0.00 (0.00%) 0.00 (0.00%)
107 2.93 s +0.06 (2.12%) +0.04 (1.20%) 0.00 (0.00%) +0.01 (0.14%)
108 28.20 s +0.17 (0.60%) +0.09 (0.31%) +0.03 (0.10%) +0.04 (0.14%)
109 279.53 s +1.29 (0.46%) +1.32 (0.47%) +0.20 (0.07%) +0.41 (0.15%)
Memory (b) Memory: resident size
1GB 1GB −13.96% +0.08% +0.03% +0.03%
2GB 2GB −17.63% +0.03% +0.02% +0.02%
4GB 4GB −2.25% +0.02% 0.00% 0.00%
8GB 8GB −1.89% +0.01% 0.00% 0.00%
16GB 16GB −1.99% +0.01% 0.00% 0.00%
File size (c) I/O: bytes read, 4KB buffer
1MB 1MB −13.64% 0.00% 0.00% 0.00%
100MB 100MB −9.07% 0.00% 0.00% 0.00%
1GB 1GB −5.84% 0.00% 0.00% 0.00%
10GB 10GB −2.13% 0.00% 0.00% 0.00%
Buffer size (d) I/O: bytes read, 1GB file
4KB 1GB −5.84% 0.00% 0.00% 0.00%
8KB 1GB −0.82% 0.00% 0.00% 0.00%
16KB 1GB −15.41% 0.00% 0.00% 0.00%
32KB 1GB −18.41% 0.00% 0.00% 0.00%

same, but the percentage increases just because the larger
buffer size results in a shorter runtime.

6. MONITORING ARCHIVE
Information gathered while monitoring HTC applications

can be valuable for our use but also to the community at
large, enabling research in resource provisioning, workload
scheduling, performance prediction, and others. To this end,
we have created a resource summary archive to capture the
information gathered by the monitoring tools. The archive is
publicly readable at http://dvdt.crc.nd.edu, and is build
on top of the content management system Drupal with cus-
tom PHP and python code, with a database backend run-
ning mysql. Users of the archive can submit sets of resources
summaries through a web interface, or with a batch job us-
ing ssh keys for authentication. When submitting sets of
resources summaries, a description of the set may be in-
cluded. This description, such as the directed acyclic graph
of tasks dependencies in a workflow, is used to characterize
and compare tasks across different sets. The archive can be
queried to produce task summaries that match conditions,
such as task name, monitoring tool used, set description,
and resource values comparisons.

Emphasising that monitoring from the user perspective is
different from a system administrator perspective, instances
of the same task may show different resources values; the
task may not change, but it is difficult to run the task in
the same environment every time. Even if task instances
run on the same host, the resources available at the host
change (e.g., memory available to the task). This presents
two non-trivial challenges: how are the sets of possible re-
source values characterized?, and how do we design excep-
tion handling for such a wide range of valid resource values?
We plan to address these questions in our future work, and
as of today, we are using the archive to observe and better
understand variability of resources usage for a given task
running on different available nodes.

As an example of this resource variability, we include in
Table 5 some statistics for the task rmapper, part of the
SHRiMP[35] package, to align genomic sequences to target

genomes. The statistics were computed from 96,501 resource
summaries, executed using the Condor pool at the Univer-
sity of Notre Dame. The pool has approximately 12,850
nodes, running different versions of Linux for the x86 64 ar-
chitecture. In Table 5 we only include resources that show
some interesting variability; resources such as virtual mem-
ory and disk footprint had very dominant peaks (kurtosis in
the order of thousands), which as expected for well-behaved
tasks, describe very small variability across the different
computing nodes. In comparison, high variability in resident
memory is reflected in relatively high standard deviation and
negative kurtosis.

In future work, we plan to use the archive to bootstrap
resource management loop: when executing new tasks, the
resources used by previous tasks instances can be queried
from the archive, and appropriate resource allocation, with
resource limits to be enforced can be determined.

7. RELATED WORK
There is a large number of system monitoring tools that

use query and event-based mechanisms. Included among
these are common system monitoring tools such as top, ps,
free and the Sysstat suite [15], which includes sar and
other tools.

Many distributed monitoring systems, including Gangila [24],
Nagios [29], and Munin [28], have been developed to pro-
vide system-level monitoring information. These systems
are typically used by system administrators for problem de-
tection and troubleshooting. They do not record the de-
tailed, job- or process-level resource usage data that is re-
quired to model the resource usage of batch workloads.

Some monitoring tools have been developed for profiling
the resource usage of HPC workloads. TACC Stats [22]
collects resource usage information including CPU usage,
memory usage, filesystem and network I/O, and hardware
performance counters. These values are recorded as a time
series from procfs, sysfs and other sources. The data is
correlated with individual jobs for later analysis based on
job ID. NCAR has used a similar approach for monitoring
CPU usage and floating point operations for HPC jobs [43].

http://dvdt.crc.nd.edu


Table 4: Monitoring Overhead
Baseline Polling fork/exit fork/exit syscall

LD PRELOAD ptrace ptrace
(resource monitor) (resource monitor) (kickstart) (kickstart)

Instr. (a) CPU overhead

106 0.32 s +0.22 (68.75%) +0.25 (78.13%) +0.18 (56.25%) +0.13 (40.63%)
107 2.93 s +0.28 (9.56%) +2.42 (82.59%) +0.14 (4.78%) +0.14 (4.78%)
108 28.20 s +0.17 (0.60%) +0.22 (0.78%) +0.10 (0.35%) +0.12 (0.43%)
109 279.53 s +0.28 (0.10%) +0.78 (0.28%) +0.07 (0.03%) +0.61 (0.22%)
Resident size (b) Memory overhead
1GB 3.57 s +0.17 (4.76%) +0.26 (7.28%) +0.06 (1.68%) +0.07 (1.96%)
2GB 6.19 s +0.10 (1.62%) +0.14 (2.26%) +0.09 (1.45%) +0.06 (0.97%)
4GB 12.64 s +0.50 (3.96%) +0.86 (6.80%) +0.24 (1.90%) +0.43 (3.40%)
8GB 25.06 s +0.51 (2.04%) +1.88 (7.50%) +0.87 (3.47%) +0.96 (3.83%)
16GB 52.81 s +1.11 (2.10%) +4.69 (8.88%) +1.38 (2.61%) +2.25 (4.26%)
File size (c) I/O overhead, 4KB buffer
1MB 0.01 s +0.17 (1700%) +0.24 (2400.00%) +0.13 (1300.00%) +0.14 (1400.00%)
100MB 1.53 s +0.09 (5.88%) +0.10 (6.54%) +0.09 (5.88%) +1.82 (118.95%)
1GB 16.02 s +0.04 (0.25%) +0.38 (2.37%) +0.36 (2.25%) +15.98 (99.75%)
10GB 153.98 s +0.54 (0.35%) +0.64 (0.42%) +0.58 (0.38%) +143.95 (93.49%)
Buffer size (d) I/O overhead, 1GB file
4KB 16.02 s +0.04 (0.25%) +0.38 (2.37%) +0.36 (2.25%) +15.98 (99.75%)
8KB 9.14 s +0.20 (2.19%) +0.38 (4.16%) +0.24 (2.63%) +8.72 (95.40%)
16KB 6.40 s +0.23 (3.59%) +0.34 (5.31%) +0.30 (4.69%) +4.13 (64.53%)
32KB 4.37 s +0.18 (4.12%) +0.43 (9.84%) +0.60 (13.73%) +2.11 (48.28%)

Table 5: Resource Archive Statistics for 96501 Instances of a Single Task in a Workflow
resource wall time cpu time resident memory

histogram 321s
122 s 777 s

21490

319 s
121 s 684 s

21022

208 MB 817 MB

61615

mean 410.55 s 406.17 s 682.62 MB
std. dev. 79.16 73.86 208.83
skewness 0.42 0.17 -1.11
kurtosis 0.26 -0.10 10.96

There are several tools that use interposition to collect
information about program behavior. The strace [38] and
ltrace [21] tools use interposition to report system calls and
library calls, respectively. LANL-Trace [19] uses these tools
to profile the I/O behavior of parallel applications. Para-

Trac [9] interposes I/O operations using a FUSE [13] filesys-
tem that records information about I/O operations before
passing them on to an underlying filesystem that stores the
actual data. The system uses chroot to ensure that all ap-
plication I/O passes through the profiling filesystem trans-
parently. ParaTrac also collects information from procfs,

taskstats [40] and the workflow management system to pro-
vide complete application profiles.

Many MPI profiling libraries that use PMPI for function
interposition, including Jumpshot [44], mpiP [27], FPMPI [12],
Scalasca [14] and others. Function interposition is used by
several tools to implement I/O profiling. Darshan [3] uses
PMPI and other function call interposition techniques to
observe the I/O behavior of MPI applications. IOT [34]
uses both PMPI and a GNU linker extension that enables
functions to be wrapped at link time to enable I/O tracing.
HPCT-IO [36] interposes UNIX I/O calls by either requiring
applications to include a header file that redefines the I/O
functions and redirects them to a tracing library, or by using
dynamic binary instrumentation to replace the I/O function
calls in the application binary. Condor uses link-time inter-

position for implementing checkpointing and remote I/O for
HTC jobs [20]

8. CONCLUSION AND FUTURE WORK
In this paper we presented a study of resource usage mon-

itoring techniques for a broad spectrum of science applica-
tions. We defined several categories of resource usage that
are of interest for workload management and planning, in-
cluding CPU usage, memory usage, storage, and I/O.

Many different mechanisms are available for measuring
these resources, but there is a large number of challenges
and tradeoffs that need to be considered when using these
mechanisms for monitoring. In order to better understand
these issues, we grouped the mechanisms into three general
categories based on their method of operation (queries, noti-
fications, interpositions), and compared the available mech-
anisms across a wide range of different characteristics, in-
cluding portability, intrusiveness, performance impact, level
of effort, accuracy, and others. Finally, we described the im-
plementation of different levels of monitoring, and presented
an evaluation of the accuracy and overhead of these tools.

In the future we plan to deploy our monitoring tools on
production infrastructure to collect resource usage data for
science applications. This data will help us extend our pre-
vious work [11] on using historical resource usage data to
automatically construct resource usage models for applica-



tions. These models can be used to derive estimates of future
resource usage, which we plan to use to guide scheduling and
provisioning algorithms, and to detect unexpected behavior
and set limits for resource usage at runtime.

9. ACKNOWLEDGMENTS
This work was funded by DOE under the contract num-

ber ER26110, “dV/dt - Accelerating the Rate of Progress
Towards Extreme Scale Collaborative Science”.

10. REFERENCES
[1] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,

and K. Kennedy. Task scheduling strategies for workflow-based
applications in grids. In 5th IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’05), May 2005.

[2] T. D. Braun, H. J. Siegel, N. Beck, L. L. BÃűlÃűni,
M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys,
B. Yao, D. Hensgen, and R. F. Freund. A comparison of eleven
static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. Journal of
Parallel and Distributed Computing, 61(6):810–837, June 2001.

[3] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley.
24/7 characterization of petascale I/O workloads. In Workshop
on Interfaces and Architectures for Scientific Data Storage,
2009.

[4] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for scheduling parameter sweep applications in grid
environments. In 9th Heterogeneous Computing Workshop,
2000.

[5] CCTools. http://www3.nd.edu/~ccl/software/download.

[6] E. Deelman, G. Metha, J.-S. VÃűckler, M. Wilde, and Y. Zhao.
Kickstarting remote applications. In International Workshop
on Grid Computing Environments, 2006.

[7] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C.
Jacob, and D. S. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems.
Scientific Programming, 13(3):219–237, 2005.

[8] DTrace. http://dtrace.org.

[9] N. Dun, K. Taura, and A. Yonezawa. ParaTrac: a fine-grained
profiler for data-intensive workflows. In Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing (HPDC 2010), 2010.

[10] DynInst. http://www.dyninst.org.

[11] R. Ferreira da Silva, G. Juve, E. Deelman, T. Glatard,
F. Desprez, D. Thain, B. Tovar, and M. Livny. Toward
fine-grained online task characteristics estimation in scientific
workflows. In 8th Workshop on Workflows in Support of
Large-Scale Science, 2013.

[12] FPMPI-2 fast profiling library for MPI.
http://www.mcs.anl.gov/research/projects/fpmpi/WWW.

[13] FUSE: Filesystem in Userspace. http://fuse.sourceforge.net/.

[14] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ã ↪AbrahÃ ↪am,
D. Becker, and B. Mohr. The scalasca performance toolset
architecture. Concurrency and Computation: Practice and
Experience, 22(6):702–719, Apr. 2010.

[15] S. Godard. Sysstat.
http://sebastien.godard.pagesperso-orange.fr.

[16] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman, and J. Good. On the use of cloud computing for
scientific workflows. In 3rd International Workshop on
Scientific Workflows and Business Workflow Standards in
e-Science (SWBES ’08), 2008.

[17] Intel PIN. http://software.intel.com/en-us/articles/pintool.

[18] J. Keniston, A. Mavinakayanahalli, P. Panchamukhi, and
V. Prasad. Ptrace, utrace, uprobes: Lightweight, dynamic
tracing of user apps. In Ottowa Linux Symposium, 2007.

[19] LANL-Trace.
http://institute.lanl.gov/data/software/#lanl-trace.

[20] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and migration of UNIX processes in the condor
distributed processing system. Technical report, University of
Wisconsin-Madison Computer Sciences Technical Report
#1346, 1997.

[21] ltrace. http://ltrace.org.

[22] C.-D. Lu, J. Browne, R. L. DeLeon, J. Hammond, W. Barth,
T. R. Furlani, S. M. Gallo, M. D. Jones, and A. K. Patra.
Comprehensive job level resource usage measurement and
analysis for XSEDE HPC systems. In Proceedings of the
Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery (XSEDE), 2013.

[23] A. Mandal, K. Kennedy, C. Koelbel, G. Marin,
J. Mellor-Crummey, B. Liu, and L. Johnsson. Scheduling
strategies for mapping application workflows onto the grid. In
14th IEEE International Symposium on High Performance
Distributed Computing, 2005.

[24] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia
distributed monitoring system: design, implementation, and
experience. Parallel Computing, 30(7):817–840, July 2004.

[25] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston,
A. Keshavamurthy, and M. Hiramatsu. Probing the guts of
kprobes. In Proceedings of the Ottawa Linux Symposium,
2006.

[26] Message Passing Interface Forum. MPI: a message-passing
interface standard, 2003.

[27] mpiP: Lightweight, scalable MPI profiling.
http://mpip.sourceforge.net.

[28] Munin. http://munin-monitoring.org.

[29] Nagios. http://nagios.org.

[30] Nvml. https:
//developer.nvidia.com/nvidia-management-library-NVML.

[31] Open Science Grid. http://opensciencegrid.org.

[32] perf. http://perf.wiki.kernel.org.

[33] Performance application programming interface (PAPI).
http://icl.cs.utk.edu/papi.

[34] P. C. Roth. Characterizing the I/O behavior of scientific
applications on the cray XT. In Proceedings of the 2nd
International Workshop on Petascale Data Storage, 2007.

[35] S. Rumble, P. Lacroute, A. Dalca, M. Fiume, A. S. A, and et.
al. SHRiMP: Accurate mapping of short color-space reads.
PLoS Compututational Biology, 5(5), 2009.

[36] S. Seelam, I.-H. Chung, D.-Y. Hong, H.-F. Wen, and H. Yu.
Early experiences in application level I/O tracing on blue gene
systems. In IEEE International Symposium on Parallel and
Distributed Processing IPDPS, 2008.

[37] R. Sobie, A. Agarwal, I. Gable, C. Leavett-Brown, M. Paterson,
R. Taylor, A. Charbonneau, R. Impey, and W. Podiama. HTC
scientific computing in a distributed cloud environment. In 4th
ACM Workshop on Scientific Cloud Computing, 2013.

[38] strace. http://sourceforge.net/projects/strace.

[39] SystemTap. https://sourceware.org/systemtap.

[40] taskstats. http:
//www.kernel.org/doc/Documentation/accounting/taskstats.txt.

[41] I. Taylor, E. Deelman, D. Gannon, and M. Shields. Workflows
for e-Science: Scientific Workflows for Grids. Springer-Verlag
New York, Inc., 2007.

[42] H. Topcuoglu, S. Hariri, and W. Min-You.
Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems, 13(3):260–274, 2002.

[43] D. D. Vento, T. Engel, S. S. Ghosh, D. L. Hart, R. Kelly,
S. Liu, and R. Valent. System-level monitoring of floating-point
performance to improve effective system utilization. In
Supercomputing, 2011.

[44] O. Zaki, E. Lusk, and D. Swider. Toward scalable performance
visualization with jumpshot. High Performance Computing
Applications, 13:277–288, 1999.

http://www3.nd.edu/~ccl/software/download
http://dtrace.org
http://www.dyninst.org
http://www.mcs.anl.gov/research/projects/fpmpi/WWW
http://fuse.sourceforge.net/
http://sebastien.godard.pagesperso-orange.fr
http://software.intel.com/en-us/articles/pintool
http://institute.lanl.gov/data/software/#lanl-trace
http://ltrace.org
http://mpip.sourceforge.net
http://munin-monitoring.org
http://nagios.org
https://developer.nvidia.com/nvidia-management-library-NVML
https://developer.nvidia.com/nvidia-management-library-NVML
http://opensciencegrid.org
http://perf.wiki.kernel.org
http://icl.cs.utk.edu/papi
http://sourceforge.net/projects/strace
https://sourceware.org/systemtap
http://www.kernel.org/doc/Documentation/accounting/taskstats.txt
http://www.kernel.org/doc/Documentation/accounting/taskstats.txt

	Introduction
	Resource Monitoring Model
	Resource Monitoring Loop
	Monitoring Mechanisms
	Resource Types
	Monitoring Challenges

	Monitoring Mechanisms
	Query Mechanisms
	Notification Mechanisms
	Interposition Mechanisms
	Monitoring on the Blue Gene Supercomputer Family
	Comparison of Mechanisms
	Detailed Example: Memory-Mapped I/O

	Monitoring Tools
	Levels of Measurement
	Kickstart
	resource_monitor 

	Evaluation
	Accuracy
	Overhead

	Monitoring Archive
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

