
1

Enabling Parallel Scientific Applications with
Workflow Tools

Adam Lathers, Mei-Hui Su, Alex Kulungowski, Abel W. Lin, Gaurang Mehta, Steven T. Peltier, Ewa Deelman, and
Mark H. Ellisman

Abstract--Electron tomography is a powerful tool for deriving
three-dimensional (3D) structural information about biological
systems within the spatial scale spanning 1 nm3 and 10 mm3.
With this technique, it is possible to derive detailed models of
sub-cellular components such as organelles and synaptic
complexes and to resolve the 3D distribution of their protein
constituents in situ. Due in part to exponentially growing raw
data-sizes, there continues to be a need for the increased
integration of High-Performance Computing (HPC) and Grid
technologies with traditional electron tomography processes to
provide faster data processing throughput. This is increasingly
relevant because emerging mathematical algorithms that provide
better data fidelity are more computationally intensive for larger
raw data sizes. Progress has been made towards the transparent
use of HPC and Grid tools for launching scientific applications
without passing on the necessary administrative overhead and
complexity (resource administration, authentication, scheduling,
data delivery) to the non-computer scientist end-user. There is
still a need, however, to simplify the use of these tools for
applications developers who are developing novel algorithms for
computation. Here we describe the architecture of the
Telescience Project (http://telescience.ucsd.edu), specifically the
use of layered workflow technologies to parallelize and execute
scientific codes across a distributed and heterogeneous
computational resource pool (including resources from the
TeraGrid and OptIPuter projects) without the need for the
application developer to understand the intricacies of the Grid.

Index Terms--Grid Computing, Pegasus, Telescience, Workflow

I. INTRODUCTION

More than a decade ago researchers at the National Center

for Microscopy and Imaging Research (NCMIR)
demonstrated the feasibility of remote control of bio-imaging
instruments (SIGraph Conference 1992). The progression of
that nascent software system was achieved under an NSF
Grand Challenge Award for the Collaboratory for Microscopic
Digital Anatomy (CMDA) that delivered the first production

Manuscript received March 20, 2006. This work was supported in part by

grants from the National Institutes of Health (NINDS NS046068, P41
RR004050, and P41 RR008605 NBCR) and the National Science Foundation
(ANI0225642)

A. Lathers, A. Kulungowski, A.W. Lin, S.T. Peltier, and M.H. Ellisman
are with the National Center for Microscopy and Imaging Research,
University of California at San Diego, La Jolla, CA 92093-0608, USA
(Corresponding author email: awlin@ncmir.ucsd.edu)

M. Su, G. Metha, and E. Deelman are with the Information Sciences
Institute, University of Southern California Marina Del Rey, CA 90292, USA

TelemicroscopyTM [1][2] software system, released in 1999.
Over the last 5+ years, researchers at NCMIR have developed
an end-to-end system known as the TelescienceTM Project
[3][4][5] that combines the use of Telemicroscopy with tools
for parallel distributed computation, distributed data
management and archival, and interactive integrated
visualization tools within a single sign-on portal. Using 2D
and 3D multi-scale imaging as the scientific driver, this
system brings to bear various HPC and Grid components (that
were previously developed in isolation) to the scientific
process.

While Telescience (and other Grid projects such as BIRN
[6] and GEON [7]) have had increasing success in delivering
HPC and Grid functionality to the end-user, little progress has
been made in simplifying adoption of these capabilities by the
domain specific applications developer. Often there exists an
impasse during the integration of scientific codes with the
Grid. Application developers are required to become Grid
experts or Grid developers are required to gain expertise in the
application domain.

The contributions of this paper are the development of a
novel computational infrastructure that utilizes workflow
technologies to accelerate the time-to-solution for creating
Grid-based scientific algorithms. Here we describe the use of
this infrastructure to create a parallel, Grid-based application
from its origins in a MATLAB development environment.
We also discuss how the workflow technologies can be
integrated within user-friendly portal-based environments to
deliver high-performance, Grid-based computations to non-
Grid experts.

II. SCIENTIFIC MOTIVATION

Researchers at NCMIR are leaders in the area of electron
microscopic tomography. In this cutting edge tomography,
there are three main stages involved in generating 3D volumes
from 2D transmission electron microscope (TEM) projection
data. The first stage, feature tracking, is a laborious process of
marking fiducial points (usually nanometer sized colloidal
gold) throughout a tomographic tilt series and utilizing
reprojection errors to fine tune the
correspondences. Automated and semi-automated methods to
track features in TEM projection series do exist, but their
performance, especially for large tilt series (>4K2 pixels in
XY), is often suboptimal. Thus, while there continue to be
efforts to automate the process, due to the frequent user
intervention required to achieve the necessary level of

551-4244-0420-7/06/$20.00 ©2006 IEEE

2

refinement in the correspondences, this step is currently not
suitable for Grid-based parallelization.

The second stage is composed of three individual parts:
(a) the calculation of the final alignment transformations using
the correspondences established in the first stage, (b) the
transformation of the projections, and (c) the backprojection
setup. Typically, parts (a) and (c) do not consume an
inordinate amount of time; however, computing the
transformed projections (part b) can be quite computationally
intensive (relative to the number of transformations involved).
The third (and final) stage is the actual backprojection, which
produces the reconstructed 3D volume from the transformed
projection series. This is where the vast majority of time and
processing power is spent. Due to the amount of computation
required (several weeks on a single workstation) and the
embarrassingly parallel structure of the underlying process,
the second and third stages are well suited for parallelization
and Grid computing paradigms.

A challenge faced by research organizations such as
NCMIR (and generalizeable to other organizations) is whether
to allocate limited human resources towards developing
parallel, Grid-based codes or to spend those resources refining
these advanced algorithms. This quandary is amplified by a
lack of mature technologies to reduce the threshold for
applications developers to build parallel Grid enabled tools.
NCMIR developers have created the Telescience ATOMIC [8]
toolkit to simplify the process of integrating gross Grid
capabilities with applications (job launching, security, etc), but
little exists to help navigate the requirements associated with
coordinating these capabilities within the context of a parallel
application.

III. TELESCIENCE ARCHITECTURE AND WORKFLOW

HIERARCHY

The Telescience architecture (shown in Figure 1) has a
hierarchal design, reducing the complexity of each layer
relative to its immediate neighbors, allowing developers of
each layer to focus on the “business logic” and to have the
“presentation logic” be managed by the layer above. For
example a portlet developer needs only be concerned with the
core business logic of the portlet, the presentation of that
portlet’s functionality is managed by the higher-level
presentation services. Likewise, the portlet developer utilizes
the ATOMIC presentation API and need not be concerned
with the business logic of the underlying services.

Primary user interaction within the Telescience Project
occurs via a web portal interface. While the Telescience
Project currently utilizes the GridSphere Framework,
(http://www.gridsphere.org) [9] any JSR168 compliant portal
framework [10], such as JetSpeed [11] or even a desktop
application can be the primary user interface within the
Telescience architecture.

Even within an architecture aimed at reducing the
complexity of software interactions, there is still a temptation
to build all-encompassing applications that capture all the
necessary functionality (across layers) in a single program.
Workflow tools accelerate the rate of software creation while
reducing this tendency by working across layers to link
together disparate code fragments and/or applications (some

pre-existing) into a single virtual environment, with little to no
change to the original source code. Within the context of the
Telescience architecture and computing environment, we
believe that workflow tools fall into the following hierarchical
classes:

• Process Management Workflows that frame the highest

level scientific (laboratory) process and provide policy,
process, state management, and administrative tools
including the coordination and management of lower
level workflows/pipelines that may comprise a scientific
study (or instance within that study);

• Inter-application Workflows that bridge together existing
tools to streamline computational operations; and provide
mechanisms to build and replicate computational
processes

• Intra-application Workflows that are composed of
planners and execution engines that optimize the
execution of these plans on heterogeneous physical
resources.

Figure 1: The Telescience architecture insulates users and developers from the
complexities of the middleware infrastructure, linking client side resources to

distributed physical resources. The Telescience project focuses on the
interaction of systems software between the portal and the core middleware

services (2nd to 4th boxes from the top).

The Telescience architecture facilitates the coordination
and sharing of state information among these three workflow
layers. Each layer has unique abilities and requirements.
Process and state management tools (typically portal-based)
are necessary to preserve and delegate the contextual
information with regard to the user. This information includes
process management, authentication and authorization, and
high-level state information (represented as the workflow
portlet in Figure 1). Inter-application tools create process
pipelines, which are subcomponents of the highest-level
experimental process management workflow. These tools are
typically user driven GUI environments that are either ordered
within the process management workflow or presented as a
general tool to serve the process management workflow as
needed. The lowest level “intra-application” tools are
composed of sub-components of the “inter-application” tools
and are necessary to map heterogeneously parallel tools to a
heterogeneous pool of physical resources.

In this article we focus on the use of the intra-application
class workflow tools to bring scientific algorithms to the Grid

56

3

faster than could otherwise be accomplished without these
tools. In particular, we focus on the use of the Pegasus
planner to map scientific workflows to the Grid, and
ultimately the use of Condor DAGMan [12] to execute the
workflows. Pegasus [13][14][15][16], which stands for
Planning for Execution in Grids, is a framework that maps
complex scientific workflows onto distributed resources, such
as the Grid. Pegasus maps an abstract workflow description to
its executable form and Condor DAGMan executes the jobs
specified in the executable workflow. Pegasus and DAGMan
are able to map and execute workflows on a variety of
platforms: Condor pools, clusters managed by LSF or PBS,
TeraGrid hosts, and individual hosts.

Pegasus operates on abstract workflow descriptions where
the analysis is described in terms of application components
and the data that the components use. The workflow is abstract
because it does not identify the resources necessary for
execution. Pegasus takes this abstract workflow description
and produces an executable workflow which identifies the
compute resources needed and includes data management
nodes which stage the data in and out of the computations.
Additional workflow nodes are added to register the newly
derived data products so that they can be located at a later
time.

Figure 2: NCMIR’s scientific computing environment places a common
interface across a heterogeneous mix of resources

The first step in the process was to develop a unified

scientific computing environment for the Telescience Project.
Like many distributed virtual organizations, Telescience has
access to a series of heterogeneous internal resources and is a
scientific gateway for a number of external virtual
organizations such as the TeraGrid (http://www.teragrid.org)
and the OptIPuter (http://www.optiputer.net). With such a
heterogeneous mix of resources, it was necessary to create an
environment that had a common interface so that the workflow
description would be easier to develop. Figure 2 outlines the
scientific computing environment at NCMIR that is utilized by
the Telescience Project.

A notable implementation choice of the Telescience
scientific computing environment that differs from other
distributed computing environments is that the Submit Node
and the Central Manager do not share a file system with the
worker nodes. This is in part to ensure modularity across the
architecture, treating both internal and external pools of

resources in the same manner. While this modularity provides
a more consistent image for connecting to the worker
resources, it has a number of implications for designing the
system. The most significant is the need for robust systems
for data delivery and authentication, authorization, accounting,
and auditing (AAAA) services. Telescience is working with
the TeraGrid project to refine the development AAAA
services to effectively address the needs of application VOs
like Telescience [17]. Implications of data transfers described
in subsequent sections of this article.

IV. SCIENTIFIC DRIVER: ELECTRON TOMOGRAPHY

The software suite we have used in this experiment is the
Transformed based Tracking, Bundle adjustment, and
Reconstruction (TxBR) package [18] developed at
NCMIR. TxBR relies on bundle adjustment to estimate
simultaneously the 3D positions of the tracked feature points
and the transforms of these positions associated with each
projection in the series. Bundle adjustment is a useful
technique for aligning TEM projection data because it
accounts for the nonlinear distortions produced by the twisting
of the electron trajectories in a TEM's magnetic lenses. The
backprojection algorithm implemented in TxBR is an
extension of the standard orthogonal backprojection process
adapted to the general case of curvilinear electron trajectories
[19]. While the transformation step of the second stage is a
time--consuming process in its own right, as an initial test of
the system we have currently only parallelized TxBR's
backprojection (3rd stage).

There are three versions of TxBR's backprojection code:
projective, quadratic, and cubic. As the names suggest, each
version in the ordered list capitalizes upon a higher degree of
approximation in the alignment transformations, albeit with a
concomitant increase in processing time.

Quadratic and cubic backprojection both require
significant amounts of processing time, with the serial runtime
of a quadratic backprojection of a standard projection series
measured in days, and that of a cubic backprojection of the
same series measured in weeks. These long runtimes are
partially the result of the experimental status of the TxBR
codebase. With the exception of a C version of the quadratic
backprojection program parallelized for clusters using MPI, all
the programs and function libraries comprising TxBR are
developed and implemented solely as MATLAB M-files.
While the conversion of MATLAB M-files to C/C++ (or other
compiled programming languages) may be undertaken and
will ultimately yield more efficient run times (whether parallel
Grid-enabled or not), the manpower effort required to
undertake that conversion comes at the cost of refining the
backprojection algorithm itself (as the application developer is
is no longer refining the algorithm but rather spending time on
programmatic language conversions).

To address this issue, Telescience capitalizes on the
planning and execution capabilities of Pegasus and Condor to
remove the requirement of the developer to code the logic of
the parallelism directly into the application. That logic is
ultimately captured within a Directed Acyclical Graph (DAG),
allowing the developer to concentrate on the core process
algorithm to be executed on the distributed resources. Figure

57

4

3 shows excerpts of sample DAG, submit, and component
files that were manually created for this experiment. To
further reduce the burden on applications developers, we have
adopted the use of the Pegasus workflow planner.

DAG
[…]
Job Job1 1.submit
Job Job2 2.submit
Job Job3 3.submit
[…]
Submit File
Universe = vanilla
Executable = matlab_tool_run.sh
[…]
Arguments =
 run_quadratic_recon_subset mlp_ko3 1 1
[…]
Requirements = (FileSystemDomain =!= "")

&& (Arch =!= "IA64")
&& (Arch =!= "INTEL")
&& (Memory >= ImageSize)
&& ((OpSys == "LINUX")
|| (OpSys == "SOLARIS29")
|| (OpSys == "SOLARIS5.10"))

should_transfer_files = IF_NEEDED
transfer_executable = False
when_to_transfer_output = ON_EXIT
Queue
matlab_tool_run.sh
[…]
basedir="M-Files"
executable="matlab -nodesktop -nosplash -r"
archID=`uname -m`
args="'$2', '$3', '$4'"
[…]
case $archID in
 x86_64)
 LD_LIBRARY_PATH="[…]/lib/glnxa64/"
 export LD_LIBRARY_PATH
esac
[…]
cd $basedir
hostname
exec nice $executable "$1($args)"

Figure 3: Example of DAGs, Submit Files, and other components

With this system, the developer supplies the necessary

instructions to describe the logic underlying the parallelization
using a single and simple abstract workflow in an XML
format (DAX file). Pegasus then automatically produces an
executable workflow from this DAX, identifying all necessary
end data and computational resources that are needed (and
eventually coordinating the use of resource discovery and
scheduling tools to generate tuned workflows on demand).

As an initial trial we employed a embarrassingly parallel
division of labor, assigning to each participating process the
reconstruction of a contiguous subset of the entire
reconstructed volume (along the Z axis). Using Pegasus and
Condor, we were able to launch the MATLAB M-files on a
number of heterogeneous systems within our lab. Using this
method we have already achieved an approximate 6x increase
in throughput, from 12+ days to just under 2 days for a
“standard volume” (approximately 17GB raw data resulting in
a 45GB 3D volume).

Currently this version is up and running for end-users
from the Telescience Portal. Similar to the previous

computational applications, the user interface completely
shields the user from the components shown in Figure 3.
Rather, the user is presented with a simplified GUI where only
biologically relevant contextual information is required. The
job is launched by a single button click and an email is sent to
the user upon completion of the job.

SUN4u/SOLARIS29 4

SUN4u/SOLARIS5.10 10
X86_64/LINUX 8

Total 22

Figure 4: Resources Used During a Trial Run using Matlab M-Files (each
machine averages 1GB RAM/ per processor across a 100MB-1GB network)

We believe that we can further increase the throughput for

three primary reasons. First, our test currently only utilizes 22
of the CPUs within the internal NCMIR resources (see Figure
4); due to network performance issues and potential
MATLAB licensing concerns, external resources such as
TeraGrid were not included (see discussion for details).
Second, this version is suboptimal as every process involved
in the reconstruction must have access to the entire aligned
projection series. This limits the number of CPUs we can
effectively utilize as the time it takes to transfers large data
will largely negate gains in computation. To avoid large
transfer of data we plan to add to the Pegasus-managed
workflow a pre-processing step that divides the aligned
projection series horizontally along the Y axis and have each
process reconstruct a horizontal strip of a subset of contiguous
Z slices. Also we have also begun to test the employment of
predictive submissions, with Pegasus, where a heavier load is
placed on more capable processors. Third, as previously
mentioned, conversion of the MATLAB code to C/C++
binaries will further increase the speed of the computation.

V. DISCUSSION

We have been pleasantly surprised at the efficiency of
moving from MATLAB-based research and development
codes to a parallel Grid-based solution. Historically, these
advanced mathematical algorithms have been developed using
MATLAB in a serial fashion. MATLAB is utilized for its
obvious advantages in developing mathematical algorithms.
Programs were written serially because the charge of the
mathematician is not to develop parallel, Grid-based
applications, but rather novel algorithms. Unlike previous
Grid-application undertakings, it took relatively little time to
create a Grid-based version of TxBR when compared to the
development of the actual algorithm. Previous efforts have
required almost equal time spent on the development of the
algorithm and the Grid-enablement. Moreover, in this case the
parallel code was developed by a domain scientist with little
knowledge of the Grid.

It used to take several months to convert a MATLAB
based set of programs to a parallel Grid-based application. By
utilizing a modular (and resource transparent) framework, it
can now accomplished (using real world data) in a matter of
just a couple of weeks (or even days). Streamlining the

58

5

development process in such a manner helps take some load
off of our mathematics and development staff so that they can
focus on perfecting the cutting edge math they're
implementing. By first encapsulating our MATLAB level
codes into a Grid solution, we're able to significantly
accelerate our “time-to-Grid”. This “time-to-Grid”
acceleration not only benefits our end-users, but also serves as
a platform for the mathematicians to be able to debug and test
their programs on real data without have to wait days/weeks
for results from serial MATLAB programs.

We are currently developing a workflow to move away
from the un-optimized, naively parallel version now utilized.
We are also constructing workflows for the 2nd stage of the
reconstruction process. We believe that with a new
parallelized routine (in a compiled language), coupled with
more CPUs, we can easily compute a standard volume in a
few hours and smaller volume within minutes, with
throughput increase in a manner that is roughly linear to the
number of processors tasked.

One of the driving forces for the Telescience Project is to
develop a real-time feedback scenario for instrumentation. In
this scenario, the Grid is not only utilized to compute data
faster but also to refine the collection of raw data. Electron
tomography (like other data collection processes) involves a
great deal of time-consuming trial-and-error. Due to the
nature of the data collection process, researchers are never
100% sure that the data collected from the instrument is
actually from the desired region-of-interest (ROI) until after
the processing and the visualization of the 3D model generated
of that area. This leads to wasted time, and loss of overall
sample quality as the electron beam degrades the specimen. If
we could calculate smaller volumes of the ROI (during live
instrument use) and give the researcher a 3D volume
representation of the ROI, we could greatly limit the overall
collection time and ultimately increase the fidelity of the raw
data.

The developments described here clearly demonstrate that
access to computational resources for applications is no longer
a bottleneck in the establishment of a real-time Grid. Network
performance, however, still remains a critical hurdle. TxBR
generates approximately three to four times the amount of
output data compared to input data. This means, for example,
that a relatively small amount of raw data (10GB) can
generate a relatively significant amount of output data (40GB).
Distributed across 128 processors, the computation time alone
would be approximately 2 hours, not including any queue wait
times (a second bottleneck which can be significant).
Considering an average network performance of
approximately 100Mb/s (with real world disk I/O and TCP
network sharing overhead) to external NCMIR computational
resources (such as TeraGrid), it will take nearly 1.5 hours to
transfer the input data to the computational end point and 3
hours to return the output to the data origin. In this example,
over 50% of the end-to-end process time is due solely to data
transfers. The problem, however, is that this data transfer
overhead is conserved as the level of parallelism is increased.
In other words, even if TeraGrid could compute the entire job
instantaneously the data transfer overhead (approximately 4.5
hrs in this example) would be preserved. The time necessary
to transfer this amount of data is unwieldy and partially or

totally negates any gains in computational times attained by
using TeraGrid resources.

Another consideration that is worth mentioning, but
perhaps outside the scope of this paper, is the issue of
distributed software licensing. Here we described the use of
MATLAB, which is issued as part of a campus wide license at
UCSD. Had this not been the case, the logistics of rights to
their licenses between VOs (i.e. TeraGrid) would have to be
examined (or at least negotiated). This issue remains a
challenge facing the Grid community.

VI. CONCLUSION

Workflow tools were originally designed to bring together

multiple existing applications instead of building a single
monolithic application. While that remains true, we have also
found that classes of workflow tools are useful and capable of
managing the intra-application transaction requirements of
parallel applications. Using that capability we have been able
to develop MATLAB based parallel codes with relative ease.
This is a significant development as the Grid becomes
available to applications developers that are outside of the
established Grid community.

VIII. REFERENCES

[1]. Hadida-Hassan, M., Young, S. J., Peltier, S. T., Wong, M., Lamont, S.

P., and Ellisman, M. H. (1999) Web-based Telemicroscopy. J. Struct.
Biol. 125:2/3, April/May, pp. 235-245

[2]. Molina, T., Yang, G., Lin, A.W., Peltier, S. and Ellisman, M.H. (2005)
A Generalized Service-Oriented Architecture for Remote Control of
Scientific Imaging Instruments, Proceedings of The 1st IEEE
International Conference on e-Science and Grid Computing, p. 56-63

[3]. Peltier ST, Lin AW, Lee D, Mock S, Lamont S, Molina T, Wong M,
Martome ME, Ellisman MH (2003) The Telescience Portal for
Advanced Tomography Applications. Journal of Parallel and Distributed
Applications, Special Edition on Computational Grids, 63(5): 539 - 550

[4]. Lin, A.W., Dai, L., Mock, J., Peltier, S. and Ellisman, M.H. (2005) The
Telescience Tools: Version 2.0, Proceedings of The 1st IEEE
International Conference on e-Science and Grid Computing, p. 56-63

[5]. Lee, D., Lin, A.W., Hutton, T., Akiyama, T., Shinji, S., Lin, F.P., Peltier,
S. and Ellisman, M.H. (2003) Global Telescience Featuring IPv6 at
iGrid2002. Future Generation of Computer Systems, 19(6): 1031 - 1039

[6]. BIRN: Biomedical Informatics Research Network, 2005,
http://www.nbirn.net

[7]. GEON: Geoscience Network, 2005, http://www.geongrid.org
[8]. Lin, A.W., Dai, L., Ung, K., Peltier, S. and Ellisman, M.H. (2005) The

Telescience Project: Applications to Middleware Interaction
Components, Proceedings of The 18th IEEE International Symposium
on Computer-Based Medical Systems, p. 543 – 548

[9]. GridSphere Portal Framework, 2005, http://www.gridsphere.org
[10]. Portlet Specification, 2003, The Java Community Process, JSR 168,

http://www.jcp.org/aboutJava/communityprocess/review/jsr168/
[11]. Jetspeed, 2005, http://portals.apache.org/jetspeed-1/
[12]. Condor Project, 2005, http://www.cs.wisc.edu/condor/
[13]. [Deelman et al 03a] Ewa Deelman, Jim Blythe, Yolanda Gil, Carl

Kesselman, Gaurang Mehta, Karan Vahi, Kent Blackburn, Albert
Lazzarini, Adam Arbree, Richard Cavanaugh, and Scott Koranda.
“Mapping Abstract Workflows onto Grid Environments”, Journal of
Grid Computing, Vol. 1, No. 1, 2003.

[14]. [Deelman et al 03b] Ewa Deelman, Jim Blythe, Yolanda Gil, and Carl
Kesselman. "Workflow Management in GruPhyN", In Grid Resource
Management, J. Nabryski, J. Schopf, and J. Weglarz (Eds), Kluwer
2003.

[15]. [Deelman et al 03c] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James
Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, G.
Bruce Berriman, John Good, Anastasia Laity, Joseph C. Jacob, Daniel S.
Katz, Pegasus: a Framework for Mapping Complex Scientific

59

6

Workflows onto Distributed Systems, Scientific Programming Journal,
Volume 13, Number 3, 2005 [Deelman et al 04] "Pegasus: Mapping
Scientific Workflows onto the Grid", Ewa Deelman, Jim Blythe,
Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil, Mei-Hui Su,
Karan Vahi, and Miron Livny. Across Grids Conference, Nicosia,
Cyprus, 2004

[16]. Lin, A.W., et al., The Telescience Project: Transparent Grid Access for
Scientific Communities, Special Issue of Concurrency and Computation:
Practice and Experience – Science Gateways at GGF14 (Submitted)

[17]. Lawrence, A., Bouwer, JC., Perkins, G., and Ellisman M.H. (2005)
Transform Based Backprojection for Volume Reconstruction of Large
FormatElectron Microscope Tilt Series, Journal of Structural Biology
(Accepted forPublication December 2005)

[18]. Lawrence A., Bouwer, J., Perkins, G., Kulungowski, A., Peltier, S., and
Ellisman, M.H. (2005) Electron Microscope Tomography: Calculating
and Inverting theGeneralized Ray Transform, Proceeding of the SIAM
Conference onImaging Sciences, May 15-17, 2006, (Submission
accepted December 2005)

60

