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Abstract—Scientific workflows, which capture large compu- In this paper, a model to estimate the makespan of scientific
tational problems, may be executed on large-scale distrided  workflows for a given number of resources is proposed. This
systems such as Clouds. Determining the amount of resources performance model takes into account the structure of the
to be provisioned for the execution of scientific workflows isa  gjentific workflow and the runtime characteristics of itsk
keygomﬁlone”t to afh'tf]‘.’e COSt'eﬁ'C'er}t resource m%ne;gemagdl using task runtime information from different runs. To eapt

00 erformance. In tnis paper, a peritormance predicton node . .
igs preiented to estimate F()':‘X%CUtiOEI time of sciF:entific workfles the_ strugtgre of the workflow, @vel-based estlmatlon modlel
for a different number of resources, taking into account ther which d'V'd?S workflow tasks into levels on the basis (.)f da.ta
structure as well as their system-dependent characterists. In ~ dependencies between them and calculates the characterist
the evaluation, three real-world scientific workflows are ued to  Of each level based on task runtimes, is proposed to predict
compare the estimated makespan calculated by the model with workflow execution time. As opposed to related work [4], [5]
the actual makespan achieved on different system configurans ~ the main difference of the performance model proposed in
of Amazon EC2. The results show that the proposed model can this paper is that it focuses on the structure of the scientifi
predict execution time with an error of less than 20% for over  workflow, which enables prediction using minimal inforneati
96.8% of the experiments. about runtime characteristics of the tasks. This is ackiidye
assigning (grouping) the tasks of a workflow into levels and
|. INTRODUCTION estimating the performance at each level. Thus, knowing the
In many scientific domains, a workflow, typically modelled runtime characteristics of the tasks when executed on a smal

as a Directed Acyclic Graph (DAG), is used to abstracthumber of resources is sufficient to provide good predistion
complex computational jobs and describe data dependencié®’ cases where a different (and perhaps larger) number of
between them [1]. Large-scale distributed systems, such 4§Sources is available to use. This property (of making dse o
clusters and grids, have been widely used to execute workflofntime characteristics for only a small nhumber of resosyce
applications [2], [3]. Recently, the use of cloud computing™May be particularly useful_ln a cloud environment. The vglid
infrastructures is gaining popularity by offering usersesal ~ Of the proposed model is demonstrated using a number of
options and benefits compared to traditional high perfogaan €XPeriments with real-world workflows on Amazon EC2.

environments, especially when it comes to provisioning re-  The remainder of the paper is structured as follows. Section
sources on demand. 2 presents related work. Section 3 describes the problem anc

A challenge that arises in a cloud computing environmengnvironment. Section 4 presents the proposed model. ectio
is to determine the number of resources (or slots) to akocat> evaluates its performance using real experiments on Amazo
for the cost-efficient execution of scientific workflows. bgia ~ EC2- Finally, Section 6 concludes the paper.
large number of resources may result in small execution,time
however, at the expense of a high monetary cost. In some Il. RELATED WORK

cases, a slightly longer execution time may be toleratehisf t  performance modeling and analysis of parallel application
comes at a significantly lower monetary cost. Thus, in ordepas peen a topic with a long history of research [6].
to use a cloud infrastructure efficiently, some ability tegtict

the workflow execution time (or makespan) is needed in order Predicting job runtime for parallel applications has been
to decide how many resources to provision. the focus of many studies, such as [7], [8], [9], [10], [11],
i ) [12], [13], [14], [15]. In [7], a prediction method for the
Typically, the makespan is affected by the number ofryntime of online tasks in high performance computing en-
resources used, the structure of the scientific workflow bu{ironments is presented. The model requires historicah dat
also task and data communication characteristics. Forpeam from different runs at the same configuration of the comygutin
independent tasks may be executed in parallel; then, bgaaHo  p|atform, while the difference from the actual measurement
ing a large number of resources a small application makespaR the clusters is significant. In [8], an algorithm for duoat
can be obtained. In other cases where the tasks can only bgrecasting of workflow activities is proposed and evaldate
exepyted sequentially, execution time will not be affedfed using both real world examples and simulations. In [9], a
additional resources are added. method to predict the runtime of jobs in grids, consisting of
SC14, November 16-21, 2014, New Orleans, Louisiana, USA geographically distributed and/or heterogeneous ressuiis
978-1-4799-5500-8/14/$31.0©)2014 IEEE developed and evaluated with experiments in real systems. |




[15], a methodology to accurately predict fine-grained taskask of the application may vary when running on different
needs for scientific workflows using an online estimationcloud environments, but it is assumed that task runtime wade
process is presented. specific system configuration can be predicted with some good
accuracy. The estimation model can then be used to determine
the number of resources required to achieve a certain ldvel o

ing of workflow-based parallel applications when running onpe formance and calculate the cost associated with thefuse o
different infrastructures has been done. In [16], job execCUiase resources.

tion times and data transfer between jobs are considered to

model workflow performance using a probabilistic model dGri Application Model: This paper considers scientific
overheads are also incorporated in the model using a randoworkflows, applications that comprise inter-related tasit
variable. A medical image analysis application is used tcdata dependencies between them [1]. Workflows can be rep-
evaluate the model, providing insight about the impact @ gr resented as DAGs where the nodes represent computatione
behavior and variability when executing scientific workflow tasks and the edges data dependencies between them. Tf
In [17], a cost model to be used when scheduling a scientifi€xecution of a task can only start after all data transfemfro
workflow in clouds is proposed. The aim is to find the bestits predecessors has finished. The time required to execute :
configuration of Virtual Machines (VMs) in terms of both task may vary when running on different cloud systems, but it
execution time and cost choosing from different choices ofS assumed that information about task runtimes on a specific
instance types and number of VMs. Performance and costystem is available to the model. The user-defined taskseof th
benefit analysis is also considered in [18] focusing on thevorkflow are assigned to jobs to be submitted for execution.

comparison between commercial and academic clouds. In some cases a number of tasks are clustered together into
single job. Task clustering can be done in a number of ways

Finally, prediction of the execution time for parallel werk to meet different optimization criteria [22], [23], [24]25].
flows is the subject in many studies, such as in [4], [5], [19],

[20], [21]. In [4], a machine learning method is proposed tha ~ Cloud Model: A cloud model similar to Amazon
takes into account application input features and histbdata. ~ Elastic Compute Cloud (EC2) [26] is assumed in this paper,
A limitation of this work is that systematic selection of then- ~ With VMs of a single instance type being provisioned on
didate input features and prediction models is requireddeo démand. Jobs have exclusive access to VMs consuming al
to improve the accuracy of the prediction. Machine learning®f their capacity. The number of available slots is equal to
models are also used in [5] to predict workflow execution timethe total number of CPUs of the provisioned VMs, assuming
in grid systems taking into account input features and syste that VMs are exclusively used for the execution of the jobs
characteristics. However, the model uses system-perfurena N the workflow. Unused slots remain idle, while a job can be
attributes and its success depends on the availabilityssotii ~ @SSigned to a free slot when data dependency constraints ar
cal and monitoring data. In [19], a local learning approamh f Met, that is, data transfer from its predecessors has fhishe
grid environments is presented weighting applicatioritattes The provider can charge for the use of resources in terms of
depending on their impact on workflow runtime, while in [20] the n_u_mber of slot_s _and the time they were used. However, the
a method to predict workflow makespan online using simifarit SPecifics of the pricing model employed are orthogonal to the
templates is proposed. In [21], a framework to predict theProposed performance model in this paper, as the perforenanc
execution time of workflow components is described, with theModel provides estimates of the workflow execution time
emphasis being on connecting the amount of data consumdgthout requiring information related to the pricing modehe

and the amount of data produced by components, as 0pposgﬂc_:ing model can be used in addition only if it is necessary t
to modeling complex workflow structures. estimate the monetary cost building on the performance inode

Also, research specifically related to performance model

In this paper, the key difference is that runtime estimation IV. M AKESPAN ESTIMATION
is based primarily on workflow characteristics and does not

require data from lots of runs on a different number of A , :
available resource slots. We demonstrate that we can still g Makespan of a scientific workflow is to take into account the
workflow structure and to divide tasks into levels based on

good insight into the number of slots to allocate in order to . .
achieve a desired level of performance when running in cloufg:e data dependencies between them so that tasks assigned
environments. e same level are independent to each other. Then, for eacl
level, its execution time (which is equal to the time reqdire
for the execution of the tasks in the level) can be calculated
I1l. PROBLEM DESCRIPTION considering the overall runtime of the tasks of the levehfth
is, the sum of the individual task runtimes). The assignment

In the target cloud environment setting a user submits &' |.vels can be done using either a top-down or a bottom-

oo or Xeculor under s ceiah Syt conTOuIalonp approach that assigns o level o each tak by taking i
— note that the two terms, resources or slots, are assum count the level of its predecessors or successors, taghec

to be identical in this paper) to be provisioned. As the ce this assignment has taken place, a level-based estimat

execution time and the monetary cost of the workflow depen(r%nvcgglll ?gggrr;:;?w cic(é?tjim ;tivﬁériuzrwgﬁzls;ﬁs to provide a

on the number of resources used, it is crucial for the user
to determine how many resources should be provisioned tg\
avoid unnecessary costs and/or wastage of resources. To do
so, the execution time of the workflow when using a specific  The two approaches used to assign levels to the tasks of the
number of resources has to be estimated. The runtime of eaeborkflow are a top-down and a bottom-up approach, explained

The key idea of the model proposed for estimating the

Level Assignment Approaches



Algorithm 1 Level-based Estimation Model

Require: the workflow with task runtimes and number of available slots
1: procedure RUNTIMEESTIMATION (runtime;, slots)
Top-Down or Bottom-Up approach, resp. Eq. 1 andi2 Assign levels to tasks

3 for each level do

4 tasksByLevel, > the number of tasks in the level

5: runtime; =y, ., runtime; > the maximum runtime of the level

6: minRuntime; = maziei{runtimey} > the minimum runtime of each level

7 mazxSlots; = tasksByLevel; > the maximum number of slots that can be used in the level
8 end for

9: for each level do

10: Computemakespan; using Equation 3 > level makespan

11: end for

12: makespansiors = Y, makespan; + Delay; > compute estimated makespan by adding all level makespans
13: return makespangos > return the estimated makespan for the given number of slots

14: end procedure

below. As every task of a level can use a maximum of only one slot,
Too-D A h (TDA) to0-d h there is no benefit in allocating more slots than the number of
op-Down Approach ( )in a top-down approac tasks at a level. Step 10 estimates the execution time of eact

the level of a task is given by the longest path from an entr . : : : :
node of the workflow. To do so, the tasks of the workflowxeva given the available slots using the following equatio

are ordered in topological order and the level of each task is

3 _ runtime;
given by Equation 1, where the level of tagkLevel,, is the =~ "AresSPan: = maz(

,minRuntimey).
min(slots, mazSlots;) !

maximum level of its predecessofs:ed;, increased by 1 with 3)
the level of all entry nodes being 0. The rationale of this equation is that the execution timeafor
single level (nakespan;) cannot be less thamin Runtime,
Levely = mazpeprea, { Levely} + 1 (1) that is the time required to run the longest task of the

level. Similarly, it is taken into account that more slots

Bottom-Up Approach (BUA)In a bottom-up approach than the number of tasks at the level will not result in

the level of each task is given by the longest path from am performance improvement. Finally, the overall workflow

exit node of the workflow. More specifically, the level of a makespanifiakespansiss) is calculated in step 12 by adding
taskt is calculated in reverse order as the maximum level othe makespan of each assigned level. To this value a fixed

its successorssuccy, increased by 1 with the level of all exit delay for the workflow may be incorporated into the model
nodes being 0. to represent job submission delays that often happen in rea

Level; = maxsesuce, { Levels} + 1 (2) environments.

In the case of different configurations, for example when
Note that other approaches for assigning tasks into levelggsources with a different number of cores per machine are
may be used. For example, one could use as many levels d§ed, the execution time of each job may vary. Also, the use of
tasks in the longest path from an entry node to an exit nodghared resources, such as the memory and network, may resu

and then try to make assignments for the remaining tasks it an increase in the execution time of the tasks. To deal with
ways that respect dependencies. the variation in the execution time of the tasks due to system

overheads and make the model more accurate for different
configuration scenarios, a scaling factor can be introduced
the calculation of the estimated makespan in Equation 3. For
example, a scaling factor based on the average of the runtime
variation of each task can be used to scale the execution time
The model to predict execution time of a workflow when of each level. Understanding how to scale execution time is
allocating a certain number of slots is described in Algo-the subject of future work.
rithm 1. Firstly, it calls the level assignment algorithnopt
down or bottom-up approach) to assign levels to the taskg
of the workflow (step 2). Then, the characteristics of each
level are calculated, including the number of tasks assigne In many real-world environments the jobs of a workflow
to the level, the maximum runtime of all the tasks of the levelare submitted through a queue-based system [2]. This may
(runtime;), being the total time required to execute the taskdntroduce an additional delay to the execution of the wovkflo
assigned in the level sequentially, and its minimum runtimeas jobs are submitted to the queue in a way that preserve:
(minRuntime;), which is the longest time a task assigneddependencies. For example, to validate the model proposec
to this level requires to run (steps 4-6). Also, the maximumin this paper, the Pegasus Workflow Management system
number of slots that can be used in a levelagSiots;) is  [27] is used to plan and execute the workflows. Pegasus
equal to the number of tasks assigned to this level (step 7jnakes use of DAGMan [28] to manage data dependencies

B. Level-based Estimation Model

. Job Submission Delays



Level | min max max Tasks;
Runtime; | Runtime; | Slots
0 13 13 1 0
1 13 29 3 1,2, 3
2 12 21 2 4,5
3 10 10 1 6
4 11 11 1 7
(b) TDA
Level | min max max Tasks;
Runtime; | Runtime; | Slots
4 13 13 1 0
3 13 22 2 1,2
2 9 16 2 3,4
7(11) 1 12 22 2 56
0 11 11 1 7
(2) DAG <) BUA

Fig. 1. An example using the two makespan prediction apjresc

between executable jobs, while Condor manages the individu It is noted that the two different approaches for assigning
execution of each job. Job runtimes used as input for théasks to levels, TDA and BUA, result in a different makespan.
estimation model are generated using the logs in DAGMarThis is because different tasks are assigned to differgetde
[28]. However, as the results of the model are compared tdhus, in both BUA and TDA, the top level consists of task
overall workflow runtimes managed by Condor, system delays). Then, TDA assigns tasks into the next levels as follows:
such as Condor/DAGMan delays or queueing time, need td1, 2, 3}, {4, 5}, {6}, {7}. Conversely, BUA assigns tasks
be accounted for [2]. In the simplest form, these delays cainto levels as follows{1, 2}, {3, 4}, {5, 6}, {7}. This is also

be approximated through a system-dependent delay added pgrown in the last column of Tables 1b and 1c.

level, which will have to be estimated separately for difer
environments and platforms. In the evaluation of the moulel i
this paper, a coarse-grain assumption for a constant délay
25 seconds per level of the workflow is made.

In general, the level assignment approach may be choser
fased on the scheduling scenario, taking into account the
workflow structure and the scheduling algorithm to be used
to allocate the tasks on the available resources. For exampl
BUA assigns tasks to the levels according to the successor:
of the tasks starting from the exit node, while TDA assigns
the levels based on the level assignment of the predecessor
D. Example starting from the root. As a result, BUA may be more suitable

Figure la ShOWS an examp|e Of hOW the execution t|méNhen the SChed.Uling aimS at eXp|0iting the Iatest fInISh t|me
prediction is performed for a simple DAG. Every node of Of the tasks, while TDA may be chosen when the scheduling
the DAG is annotated with two numbers. The first number@ims at executing the tasks as early as possible.

is the task id, the number inside brackets is the estimatid ta As already mentioned, a good reason for having a workflow

runtime. execution estimation model for a cloud platform is to assess
Using TDA and two slots the predicted makespan is: ecution time against the monetary cost for using the ressurc
TDAggors = 13 +14.5+ 12+ 10 + 11 = 60.5. To illustrate this, we apply a simple pricing model to the
The makespan is reduced for 4 slots to: example DAG and the estimation results above. In this pgicin
TDAygors = 13+ 13+ 12+ 10 + 11 = 59. model, the monetary cost is proportional to the overall tive

It can be seen that only one slot can be used in level 0 thalots were used, which corresponds to the overall valueef th
contains one task (task 0), while the estimated makespan #fakespan. More specifically, an upper bound on the monetary
level 1 is reduced to the minimum level makespan, the runtim&0st to execute the workflow on a number of slatets, can

of longest task of the level (task 2), in the case of 4 avadlabl be computed based on the estimated makespan. The cost ¢
slots. In the case of BUA, the predicted makespan for 2 slot§rovisioning a slot,r, for a period equal to the scheduling
is: makespanmakespangois, IS cOMputed as

BUAsg s =13+ 13+ 9+ 12+ 11 = 58.

The same makespa#fs, is achieved when using BUA with

of TDA, as tasks 3 and 5 are assigned to different levelsgyerall cost required for the execution of the workflow is the

starting from the exit node. The system-dependent delays, isym of the provisioning cost of each slot used, with an upper
this example, are considered to be 0. Tables 1b and 1c shoyynd of

the detailed values used in the calculation of the estimated
makespan according to Equation 3. CostBoundgots = Cost, * slots, (5)

Cost, = p*x makespangots, 4)



when using the available number gfots. the workflow jobs, including Amazon S3 [30], NFS [31],

In the case of the example, assume that each resour%g;tgrlzs [32], PVFS [33], P2P file sharing and local disk

used is charged at the price of $1 for each time unit. Then,

the cost incurred by the user is expected to be $58*2=$116 Amazon S3 [30] is a distributed system that provides stor-
for BUA and $60.5*2=$121 for TDA, when two resources age for objects, such as files, through web service intesface

are provisioned. The cost is expected to increase when prdhe network file system NFS [31] uses a centralized node,
visioning a larger number of resources. Indeed, when using file server, connected to a group of machines in order to
four resources, the monetary cost is $58*4=$232 for BUAprovide access to files over the network. GlusterFS [32] is
and $59*4=$236 for TDA. This assessment suggests that a distributed storage system with client and server compo-
slight delay in workflow execution may be tolerated to avoidnents in each node, supporting various configurations (such
a significant increase in the monetary cost and strike a goods non-uniform file access and distributed configurations).
balance between the execution time and application cost fdach remote server exports a local volume and merges it

using the cloud resources. with the volumes of the other machines in order to compose
the final volume, while a hashing algorithm can be used in
V. EVALUATION the configuration to distribute the files to the nodes more

uniformly. In the case of the parallel file system PVFS [33],
data striping is used to distribute file data across multiple
To validate the model, experiments on Amazon EC2 usingnodes and provide parallel access by the tasks. Softwar® RAI
three real-world workflows were carried out. The configunati (RAID 0) is also used to improve I/O performance by striping
used to execute the workflows on EC2 is described next. data across the available ephemeral storage devices [3].

A. Experimental Setup

Firstly, a submit host runs outside the cloud to manage

the workflows and set up the execution environment usindg. Workflows
the Pegasus Workflow Management system [27]. The Nimbus
Context Broker [29] is also installed to provision and coufig
the virtual cluster, consisting of the configured VMs. To do
so, worker nodes to execute the workflow jobs inside th
cloud are deployed on Amazon EC2 using the cl.xlarge and
ml.xlarge instance types in the experiments. The cl.xlarge Montage is a scientific workflow that generates image
instance type is configured with an eight-core 2.33-2.66 GHosaics of the sky and can be characterized as 1/O intensive
Xeon processor, 7.5 GB RAM and 1680 GB local disk storagd3], [37]. Most of the jobs in Montage have low CPU utilizatio
and the ml.xlarge instance type is configured with two dualand short runtime, spending their execution time mainly on
core 2.0-2.6 GHz Opteron processors, 15 GB RAM and 16800 operations to read and write files. A simple example of
GB local disk storage. For the execution of the workflowsthe structure of Montage is shown in Figure 2a. The number
different storage systems running inside the cloud are useof the jobs in each level may vary depending on the size of
in the experiments to store the input and output data ofhe generated workflow and the number of clusters used. A
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Three real scientific workflows were used in the experi-
ments, namely Montage [34], Epigenome [35] and Broadband
36]. The basic structure of the three workflows is shown in
igure 2.
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(a) Montage (b) Epigenome (c) Broadband

Fig. 2: The structures of the workflows used.



Montage workflow with 10429 tasks was generated and used
in the experiments. The tasks were clustered to create h tota
of 31, 55, 103-104, 152, 248, 440 and 823 jobs when using
4, 8, 16, 32, 64, 128 and 256 clusters per level, respectively
The jobs can be divided into 13 levels taking into accourddat
dependencies between them.

lized)

The Epigenome workflow maps the epigenetic state of
human cells and can be classified as a CPU-bound application
[3], [37] with several parallel jobs operating in indepentie
data files, as shown in Figure 2b. Most of the jobs are compu-
tationally intensive, while only a few jobs, that split/cent
the input files to multiple/formatted output files, have low
CPU utilization. As a result, most of the runtime is spent in
the CPU and only a small amount of time is spent on other
operations. An Epigenome workflow of 529 tasks was used in
the experiments, with the tasks clustered to create a tétal o
50-51, 83, 147, 275 and 529-531 jobs using 8, 16, 32, 64 and
128 clusters per level, respectively. The Epigenome workflo
consists of 11 job levels.

rma

Execution Time (No

Broadband is a data-intensive workflow application with
high memory utilization that integrates earthquake motion
simulation codes [3], [37]. Jobs with high memory require-
ments (more than 1 GB of memory) have the longest runtime __
consuming more than 75% of the total execution time of the
workflow, while some data are being accessed several times. | -
the experiments, a workflow of 768 tasks was generated which
was executed using 770 jobs (one task per job including two
extra jobs to create the working directory and copy the files
to it) in 6 levels.

C. Results

Execution Time (Normalized

To evaluate the model, experiments on Amazon EC2 using <
the three workflows (and task clustering as mentioned)ediff
ent storage configurations and running on 4, 8, 16, 32, or 64
slots were carried out. In total, there were 35 experiments f
Montage, 25 experiments for Epigenome and 35 experiments
for Broadband.

a) Comparison of estimated makespan with actual mea-
surements:To validate the accuracy of the model, individual
job runtimes obtained from actual workflow runs for a given
number of slots were used as input to the model to come upo
with estimations of the workflow execution time (makespan)
according to Algorithm 1. The error between the estimateti an
the real (actual) makespan was calculated using the equatio

makespanycq — makespanpred

(6)

€ =
makespancql

In the case of Montage 33 out of 35 experiments gave
an error,e, less than 10%. The prediction accuracy is lower
for Epigenome with an error less than 10% in 17 out of
the 25 experiments. The results are identical regardless of
whether TDA or BUA is used to assign levels. In the case
of Broadband, the accuracy of the model is higher using TDA
with 27 out of 35 experiments resulting in an error of less
than 10%. Using BUA 25 out of 35 experiments had an error
of less than 10%. This is due to Broadband’s structure, which

Execution Time (Normalize:
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results in a significantly different level assignment dapieg  Fig. 3: Execution time prediction compared with real measur
on whether TDA or BUA is used. For all three workflows ments.

(35+25+35 = 95 experiments) there were only 2 experiments



in Epigenome and 1 experiment in Broadband where the errdf they are estimated for every storage system separataly (t
was higher than 20%. In all three cases, it appears that the demonstrated later in this section).

model overestimates, which suggests that there was minimal . _ :
job submission delays in these three cases. Overall, in 92 ou c) Model performance evaluation with inaccurate job

of 95 (or 96.8%) experiments, the model gives an error of les§UNtimes: So far, we used as an input of the model actual (mea-
than 20%, while in 77 out of 95 (or 81%) experiments thereSured) job runtimes. In reality, the individual job runtisnesed
an input to the model may deviate from actual runtimes.

was an error of less than 10%. In this exercise, the accurfacy &3 . ; :
the model was evaluated for the case of perfectly accurske ta/though the assumption that the runtimes of the jobs can be
runtime estimates. To do this, we used the actual task restim 2d€quately predicted may be reasonable (see for example th
of a given run to predict the workflow makespan of that run and@r9e Pody of work focusing on job runtime prediction and/or
compared the estimated makespan with the actual makesp¥fg'kflow characterization [8], [9], [10], [11], [12], [37])in

of the run. Later (in paragraph c) we deal with inaccuratg €ality these models may overestimate or underestimate the

predictions, as estimated and actual task runtimes mayinary €Xecution time of the jobs, especially as there have been
practice. cases where job performance appear to vary even for cloud

instances of the same type from the same cloud provider [38].
b . h del K dicti for diff In order to investigate the impact of inaccurate individual
) Using the model to make predictions for different;q, ntimes on the overall workflow makespan predicted by

number of slots:In this exercise, we used individual job e model, job runtimes (it for short) were varied using a
runtimes from each experiment (on a given number of slotsﬁandom error in the range af5%, +10% and +15%. We

to predict the workflow makespan for 4, 8, 16, 32 and 64rgenerated 100 random values for each of the three ranges an
slots. This gives a range of predictions (one prediction fo

J X for each of the &5 + 25 + 35 = 95) experiments for the three
every experiment used) for each number of available slotSyqfiows. The errore, between estimated makespan by the
out of which we considered the minimum and the maximumy,qdel and actual values on EC2 was computed in each case

values. These values, along with the real measurements f@f,aon  the percentage of the experiments witleing less
every workflow and every different number of slots are showny, o ’10%, 15% and 20% using TDA or BUA is presented

in Figure 3. The triangular symbols (normal and upsidej, Tapie |. These percentages relate to 3500 error values
down) indicate the maximum and minimum predicted valuesgy, aach case in Montage (35 experiments100 random
respectively, while the dots correspond to real measur&nen, 51 es) 2500 error values for each case in Epigenome anc
on EC2. Execution time is normalized using the sum of the3sng grror values for Broadband. It can be seen that even wher
runtimes of the jobs (equivalent to the time needed 10 rUfnere s inaccuracy in individual job runtime estimatesduse
all jobs on one slof). This is because, even with the samgy e model, the performance of the model is not different
Mo the results obtained with accurate job runtime estimates
As noted in the first paragraph of this section (comparison
of estimated makespan with actual measurements), in 33 ou

using different storage systems [3]. It can be seen thatehle r
measurements are within the prediction range. The vaniatio
between the minimum and maximum prediction is different for¢ 55 experiments (or 94.28%) for Montage, in 17 out of

each workflow and it is more profound in the case of Montageyg experiments (or 68%) for Epigenome and in 27 out of

This is expected and it is due to the impact of storage systemss oynariments (or 77.14%) for Broadband (using TDA) the
on workflow 1/0 activity. Montage processes many files andy,,qe| gave a prediction error of less than 10%. The first two

a large amount of data is processed and generated resulting,s of the table (corresponding to < 10%) suggest that

0 Meven a small inaccuracy in job runtimes does not affect the
performance has a big impact on workflow performance. "berformance of the model significantly.

contrast, storage systems affect the performance of Epigen
less, as this is a CPU-intensive workflow where most of the d) Estimating workflow execution time in practice:
time is spent operating data in memory, not on 1/O. Finafly, i In the previous paragraphs, we evaluated different aspdcts
Broadband the variation is small as the workflow involvesta lothe model and compared actual measurements with mode
of input data, but relatively little output data; much of fhput  predictions. In reality, the model may be used with some
data is common, so the workflow makes more effective use ahdividual job estimates to predict the workflow execution
the file system cache than Montage. Clearly, as data storadgine for a number of slots for which there are no actual
systems influence execution time, predictions can be inggtov workflow runs. Such a prediction may be important in order

Montage Epigenome Broadband
€ Model || rt+ 5% | rt+ 10% | rt+ 15% || rt+ 5% | rt+ 10% | rt+ 15% || rt+ 5% | rt+ 10% | rt+ 15%
< 10% TDA 94.49 89.94 79.94 68.28 68.08 65.40 77.40 80.31 80.51
BUA 94.37 89.89 79.29 68.24 68.08 65.80 71.98 74.26 77.26
< 15% TDA 98.34 98.23 97.03 79.76 79.96 79.64 88.77 88.89 88.57
BUA 98.49 98.51 97.20 80.20 80.20 79.92 85.54 86.51 86.66
< 20% TDA 100.00 | 100.00 99.86 90.88 89.64 89.04 97.14 97.03 96.91
BUA 100.00 | 100.00 99.01 90.44 90.20 89.52 97.14 96.83 96.46

TABLE I: Percentage of experiments within a certain pradittaccuracy.
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Fig. 4: Execution time prediction for different slots andregte
storage system.

to determine in a cost-efficient manner the number of slots
to provision for every different workflow. In this exercisge
considered for each workflow the measurements on a specific
storage system and we tried to estimate the performance for
any different number of slots. To do this, we run the model
multiple times using as an input individual job runtimestwit

a random variation of+£10%. More specifically, we used
as a starting point individual job runtimes from: 9 diffeten
measurements for Montage using GFS on 16, 32 and 64
slots; 7 different measurements for Epigenome using NFS on
8, 16, 32, and 64 slots; and 4 different measurements for
Broadband using Amazon S3 on 8, 16, 32, and 64 slots. For
each of these measurements 100 values with a variation of
+10% were generated for individual job runtimes and used as
input to the model. The predicted workflow execution times
(900 predictions for Montage, 700 predictions for Epigeeom
and 400 predictions for Broadband) were averaged for each
workflow and number of slots and the results are shown in
Figure 4. It can be seen that the (average) estimated vatues fi
well with the measurements we had, also giving a prediction
for a number of slots from 4 to 256. These predictions also
indicate that there is no performance improvement for Mgata

if more than 64 slots are used or for Epigenome and Broadbanc
if more than 128 slots are used. Having this information in
practice is important for the user to decide what number of
slots to provision.

VI. CONCLUSION

In this paper we considered the problem of execution
time prediction for scientific workflows. A model to estimate
workflow makespan based on information about the workflow
structure and individual job characteristics is descrihsihg
two different approaches to assign levels to the jobs. The pe
formance of the model was evaluated and compared with real
experiments on Amazon EC2 using three scientific workflows.
The results show that the model has good prediction accuracy

Future work could improve the accuracy of the model using
more elaborate estimates for system overheads or job restim
for instance estimating runtimes in relation to the numifer o
slots used, introducing a scaling factor for the variatibthe
execution time of the tasks. Another interesting obseovaits
that other level assignment approaches can be developed fo
workflow structures where several tasks can be distributed i
more than one levels sometimes without affecting the level
assignment of their predecessors and successors. For kexamp
in such cases tasks with long execution time may be dis&tbut
in more than one level or tasks with short runtimes can be
assigned to different levels depending on the structurdef t
workflow. Level assignment approaches to deal with these
cases is another future direction to be followed. Finalhg t
proposed model can be used to estimate operational costs an
find cost-efficient configurations.
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