
Montage on the Grid

Please send comments to gurmeet@isi.edu or deelman@isi.edu 1

 April 3,2003
Montage on the Grid

Gurmeet Singh, Ewa Deelman
gurmeet@isi.edu, deelman@isi.edu

1. Introduction
 Montage is an astronomical image mosaic service for the National Virtual
Observatory[1][2]. One of the goals of Montage is to run the computations on
the Grid. In the remaining part of this document we describe the procedures
used to run Montage on a Grid like environment (a pool of linux machines),
the results obtained and the issues that we faced. The computation executed
was to generate a custom mosaic from a set of 91 2MASS image data sets.
The image data set used for computation is available at
http://gaul.isi.edu/montage/raw_data and the final generated mosaic files are
available at http://gaul.isi.edu/montage/final_mosaic.fits and
http://gaul.isi.edu/montage/final_mosaic_area.fits. This work was performed
on an evaluation release of Montage, made available with the permission of
the Montage Project.

2. Porting Montage to Chimera/Pegasus
 Chimera is a virtual data system for representing, querying and
automating data derivations [3] . Chimera provides a framework for
representing a set of application programs and their instantiations as
transformations and derivations respectively. For example a particular
Montage operation such as
 mImgtbl data_dir images.tbl
for picking up all the image files in the data_dir and creating a metadata table
called images.tbl can be expressed as the following chimera transformation
 TR mImgtbl(in imagedir, out imagestbl) {
 Argument = ${imagedir};
 Argument = ${imagestbl};
 }
A particular derivation of the same can be expressed as
 DV d1->mImgtbl(
 Imagesdir=”/home/data/raw_data”,
 Imagestbl=@{out:”raw_images.tbl”}
);

 The complete set of transformations and derivations used for the
computation is shown in appendix I.

3. Montage Computations
 The Montage version used for the computation was 1.4. In the following
discussion we refer to individual montage methods like mImgtbl, mSubset etc

Montage on the Grid

Please send comments to gurmeet@isi.edu or deelman@isi.edu 2

as montage methods or operations while the whole process of getting the
final image mosaic by composing these operations is called a montage
computation. For running montage over chimera we had to generate the
equivalent transformations and derivations for all the montage methods we
used. Output and input arguments like image tables, corrections table etc
were given logical file names which is used to chimera to identify
dependencies between the operations. These logical file names are the
parameters in the derivations shown in the appendix. An abstract dag is
created for computing the final image mosaic fits file. This abstract graph of
derivations produced by chimera for a set of operations is transformed into an
executable DAG by the Pegasus planner. This executable DAG is then
submitted to the Condor-G [4] to be executed over the Grid.

The Montage computation was run on a pool of linux machines at IS I. The
input to the computation was a cache of 2 Micron All Sky Server (2MASS)
image files in fits format and the output is the final image mosaic fits file.
There is a series of 12 operations run to achieve the final output. (mImgtbl ->
mMakehdr -> mSubset -> mProjExec -> mImgtbl -> mOverlaps -> mDiffExec -
> mFitExec -> mBgModel -> mBgExec -> mImgtbl -> mAdd). There were 91
image files in the input set. The number was chosen keeping memory
requirements in mind. The computation ran for about 5 hours. The header
template used for the computation was derived from the raw data by using the
mMakehdr operation. The following chart shows all the operations invoked
and the average run time for each operation.

0

50

100

150

200

250

RunTime

mImgtbl

mMakehdr

mSubset

mProjExec

mOverlaps

mDiffExec

mFitExec

mBgModel

mBgExec

mAdd

 Fig 1. The run time of the operations. The Y axis shows the time in
minutes. Most of the operations finish within a couple of minutes. However
mProjExec takes 224 minutes and mAdd takes 50 minutes.

Montage on the Grid

Please send comments to gurmeet@isi.edu or deelman@isi.edu 3

0
100
200
300
400
500
600
700

800

Storage Space

raw data files

projected data files

diff data files

mosaic data files

final fits file

final area fits file

 Fig 2. The storage requirements for the total computation. The Y axis
show the space requirement in Mbytes. The size of input image data is 183 Mb.
The computation creates the projected data files, difference data files, mosaic
data files. The final operation mAdd creates two fits file each of 420 Mb. The total
space requirement is around 2.7 Gb.

4. Issues involved
 While porting montage to run on the grid wasn’t particularly difficult,
several issues were observed which are worth mentioning. Some of these
issues may need to be addressed.

• User Interface to Montage: What should be the user interface to
Montage and what should be the granularity of the interface ? We can
provide a web service kind of interface to the montage computation
over the Grid. Since the computa tion can take a long time, the web
service operations has to be asynchronous. The user can be returned
a url where he can track the progress of the computation. Another
issue is the granularity of the interface. We can provide a service which
takes as input a set of image files and returns the final image mosaic
or we can expose each of montage methods as web service
operations and let the user compose them to achieve the final
outcome. The second option is more difficult than the first one as it
would increase the complexity and would require changes to how the
montage operations are invoked.

• Specifying the input: Presently the computation takes as the input the
fits image files present in a directory. Obviously this will work if the
image files are present on the same machine or file system accessible
for a machine on which the computation is run. But this may not be
true in most of the cases. First of all the user may not know on which
machines the computation is going to run and he may not have the
authorization to directly transfer image files to that pool. We need a
standard interface for specifying the data input to the montage service.
We can use a VOTable for specifying the input image files. This
provides a standardized way to indicate the list of input images. Also
we can specify logical file names and physical urls for each of these
image files in the VOTable. The logical file name will help Pegasus to
determine if the image file has already been fetched before as part of

Montage on the Grid

Please send comments to gurmeet@isi.edu or deelman@isi.edu 4

some previous computation and if not then the url can be used to fetch
the image file over the internet. There are a few operations in montage
that take as input the data present in a particular directory. All these
methods can use VOTable for specifying the data set. Using VOTable
would require the montage code to be changed or we can write
wrappers around those methods to work with VOTables.

• Identifying data provenance: Each run of the montage computation
should be tagged so that it can reuse data products computed by
previous runs and the data products produced by this run can be used
by future computations. This means that we should be able to assign
logical names of the computed data products which are unique. The
montage computation can run for days and produces gigabytes of
intermediate data products. It would be an inefficient utilization of
resources if the computations that have been done already need to be
done again. These intermediate data products need to be given unique
logical names. The data products derived for the same input data but
with different parameters should be named differently to reflect their
derivation. Either the logical names should reflect those parameters or
attributes can be assigned to the files. The second figure shows that
the computation has a storage space requirement of 2.7 Gb. Thus it
would be very efficient to reuse the projected data files, diff data files,
mosaic data files if they have been created in the past instead of
creating them again.

• Identifying parallelism: There is lot of scope to parallelize the current
montage computation to decrease the effective run time. As can be
seen from figure 1, the mProjExec operation takes 224 minutes while
the total computation takes about 300 minutes. Thus there can be lots
of saving if we can decompose the mProjExec operation. mProjExec is
a wrapper which calls mProject sequentially 91 times (since there were
91 input 2mass image files). Thus if we can start the execution of these
mProject operations in parallel we can reduce the total run time by
utilizing more machines. Also it may be that some of these operations
may need not be called as the projected image files may already have
been computed in past and we can reuse them. However it will
increase the communication cost of the model and it will require the
implementation of mProjExec to be changed.

• Security issues: Once we have decided on the interface to the
service, we will need to decide on the security model. Should we allow
anonymous users to access and utilize the service or should we allow
only authenticated (plain password, GSI authentication etc) users to
access the service. Another model can be to allow anonymous users
to run limited size computations while requiring authentication for
larger computations.

• Recovery issues: Since the montage computation is supposed to run
on the grid, we have to look into how to handle failures. When the
computation is running standalone on a machine by a user, he can

Montage on the Grid

Please send comments to gurmeet@isi.edu or deelman@isi.edu 5

observe if the computation has crashed and try to debug it by using the
core dump. However in the grid environment, the computation can be
scheduled on any available machine by the meta scheduling system
(condor-g etc). In such environment it is very important for the
application to do a graceful exit leaving enough information for the user
to later go through the logs and infer what went wrong. For example
the machine on which the mAdd computation is scheduled may not
have enough memory to run the computation (for this particular run, it
required about 880 Mb, for a input image set of about 242 files it
requires more than 3 Gb). Thus instead of assuming that the memory
will always be there, it would be more prudent to check the memory
allocation before using it and logging and doing a graceful exit in case
the memory is not there.

• Control dependencies: The chimera virtual data system recognizes
data dependencies between the operations and generates the abstract
DAG accordingly. Some of the dependencies between the methods in
montage is not explicit i.e. mDiffExec writes files in a difference
directory and mFitExec reads file from that directory. Given that both
these operations take a string as an argument which is the name of the
difference directory, it is not possible for chimera to identify the control
dependency between them. Thus we may like to modify the signature
of these operations to make the dependency between them more
explicit. One option is that mDiffExec creates an output VOTable which
lists the created files and mFitExec reads this VOTable and uses the
files. This will also allow these operations to be used as standalone
services. The transformations and derivations for mDiffExec and
mFitExec in the appendix show an extra dummy file being created by
mDiffExec and consumed by mFitExec. This dummy argument has
been added only for chimera to understand the control dependency
between them. Similar arguments have been added to other methods
where the dependency is not explicit.

5. References

 [1] http://montage.ipac.caltech.edu
 [2] http://www.us-vo.org

 [3] http://www.griphyn.org/chimera
 [4] http://www.cs.wisc.edu/condor/condorg

Montage on the Grid

Please send comments to gurmeet@isi.edu or deelman@isi.edu 6

Appendix – I

The virtual data language transformations and derivations used to populate
the virtual data catalog.

TR mImgtbl (input dummy = @{input:"dummy":"temp"}, in imagedir , out imagestbl) {
 argument = ${imagedir};
 argument = ${imagestbl};
 argument = " -d 1";
}

TR mMakeHdr(in imagestbl, out templatehdr) {
 argument = ${imagestbl};
 argument = ${templatehdr};
 argument = " -d 1";
}

TR mSubset(in imagestbl, in templatehdr, out imagessubsettbl) {
 argument = ${imagestbl};
 argument = ${templatehdr};
 argument = ${imagessubsettbl};
 argument = " -d 1";
}

TR mProjExec(in imagessubsettbl, in templatehdr, in projdir, out statstbl,
 output dummy = @{output:"dummy":"temp"}) {
 argument = ${imagessubsettbl};
 argument = ${templatehdr};
 argument = ${projdir};
 argument = ${statstbl};
 argument = " -d 1";
}

TR mOverlaps(in imagestbl, out diffstbl) {
 argument = ${imagestbl};
 argument = ${diffstbl};
 argument = " -d 1";
}

TR mDiffExec(output dummy = @{output:"dummy":"temp"}, in diffstbl, in templatehdr, in diffdir) {
 argument = ${diffstbl};
 argument = ${templatehdr};
 argument = ${diffdir};
 argument = " -d 1";
}

TR mFitExec(input dummy = @{input:"dummy":"temp"}, in diffstbl, out fitstbl, in diffdir) {
 argument = ${diffstbl};
 argument = ${fitstbl};
 argument = ${diffdir};
 argument = " -d 1";
}

Montage on the Grid

Please send comments to gurmeet@isi.edu or deelman@isi.edu 7

TR mBgModel(in imagestbl, in fitstbl, out correctionstbl) {
 argument = ${imagestbl};
 argument = ${fitstbl};
 argument = ${correctionstbl};
 argument = " -d 1";
}

TR mBgExec(in imagestbl, in correctionstbl, in mosaicdir, output dummy =
 @{output:"dummy":"temp"}) {
 argument = ${imagestbl};
 argument = ${correctionstbl};
 argument = ${mosaicdir};
 argument = " -d 1";
}

TR mAdd(in imagestbl, out finalmosaicfits, in templatehdr) {
 argument = ${imagestbl};
 argument = ${finalmosaicfits};

 argument = ${templatehdr};
 argument = " -d 1";
}

DV d1->mImgtbl(
 imagedir="raw_data",
 imagestbl=@{out:"raw_images.tbl"}
);

DV d2->mMakeHdr(
 imagestbl=@{in:"raw_images.tbl"},
 templatehdr=@{out:"template.hdr"}
);

DV d3->mSubset(
 imagestbl=@{in:"raw_images.tbl"},
 templatehdr=@{in:"template.hdr"},
 imagessubsettbl=@{out:"raw_images_subset.tbl"}
);

DV d4->mProjExec(
 imagessubsettbl=@{in:"raw_images_subset.tbl"},
 templatehdr=@{in:"template.hdr"},
 projdir="proj_data",
 statstbl=@{out:"stats.tbl"},
 dummy=@{output:"dummy1":"temp"}
);

DV d5->mImgtbl(
 dummy=@{input:"dummy1":"temp"},
 imagedir="proj_data",
 imagestbl=@{out:"proj_images.tbl"}
);

DV d6->mOverlaps(
 imagestbl=@{in:"proj_images.tbl"},
 diffstbl=@{out:"diffs.tbl"}

Montage on the Grid

Please send comments to gurmeet@isi.edu or deelman@isi.edu 8

);

DV d7->mDiffExec(
 dummy=@{output:"dummy2":"temp"},
 diffstbl=@{in:"diffs.tbl"},
 templatehdr=@{in:"template.hdr"},
 diffdir="diff_data"
);

DV d8->mFitExec(
 dummy=@{input:"dummy2":"temp"},
 diffstbl=@{in:"diffs.tbl"},
 fitstbl=@{out:"fits.tbl"},
 diffdir="diff_data"
);

DV d9->mBgModel(
 imagestbl=@{in:"proj_images.tbl"},
 fitstbl=@{in:"fits.tbl"},
 correctionstbl=@{out:"corrections.tbl"}
);

DV d10->mBgExec(
 imagestbl=@{in:"proj_images.tbl"},
 correctionstbl=@{in:"corrections.tbl"},
 mosaicdir="mosaic_data",
 dummy=@{output:"dummy3":"temp"}
);

DV d11->mImgtbl(
 dummy=@{input:"dummy3":"temp"},
 imagedir="mosaic_data",
 imagestbl=@{out:"mosaic_images.tbl"}
);

DV d12->mAdd(
 imagestbl=@{in:"mosaic_images.tbl"},
 finalmosaicfits=@{out:"final_mosaic.fits"},
 templatehdr=@{in:"template.hdr"}
);

